Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Top Membr ; 92: 1-14, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38007264

RESUMO

"No cell could exist without ion channels" (Clay Armstrong; 1999). Since the discovery in the early 1950s, that ions move across biological membranes, the idea that changes of ionic gradients can generate biological signals has fascinated scientists in any fields. Soon later (1960s) it was found that ionic flows were controlled by a class of specific and selective proteins called ion channels. Thus, it became clear that the concerted activities of these proteins can initiate, arrest, and finely tune a variety of biochemical cascades which offered the opportunity to better understand both biology and pathology. Cancer is a disease that is notoriously difficult to treat due its heterogeneous nature which makes it the deadliest disease in the developed world. Recently, emerging evidence has established that potassium channels are critical modulators of several hallmarks of cancer including tumor growth, metastasis, and metabolism. Nevertheless, the role of potassium ion channels in cancer biology and the therapeutic potential offered by targeting these proteins has not been explored thoroughly. This chapter is addressed to both cancer biologists and ion channels scientists and it aims to shine a light on the established and potential roles of potassium ion channels in cancer biology and on the therapeutic benefit of targeting potassium channels with activator molecules.


Assuntos
Canais Iônicos , Neoplasias , Humanos , Canais Iônicos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Canais de Potássio/metabolismo , Canais de Potássio/uso terapêutico , Membrana Celular/metabolismo , Potássio/metabolismo
2.
Cells ; 11(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35954304

RESUMO

The prevention of metastasis is a central goal of cancer therapy. Caveolin-1 (Cav-1) is a structural membrane and scaffolding protein shown to be a key regulator of late-stage breast cancer metastasis. However, therapeutic strategies targeting Cav-1 are still lacking. Here, we demonstrate that the pharmacological activation of potassium channel Kv11.1, which is uniquely expressed in MDA-MB-231 triple negative breast cancer cells (TNBCs) but not in normal MCF-10A cells, induces the dephosphorylation of Cav-1 Tyr-14 by promoting the Ca2+-dependent stimulation of protein tyrosine phosphatase 1B (PTP1B). Consequently, the dephosphorylation of Cav-1 resulted in its disassociation from ß-catenin, which enabled the accumulation of ß-catenin at cell borders, where it facilitated the formation of cell-cell adhesion complexes via interactions with R-cadherin and desmosomal proteins. Kv11.1 activation-dependent Cav-1 dephosphorylation induced with NS1643 also reduced cell migration and invasion, consistent with its ability to regulate focal adhesion dynamics. Thus, this study sheds light on a novel pharmacological mechanism of promoting Cav-1 dephosphorylation, which may prove to be effective at reducing metastasis and promoting contact inhibition.


Assuntos
Caveolina 1 , Neoplasias de Mama Triplo Negativas , Caveolina 1/metabolismo , Movimento Celular , Cresóis , Humanos , Compostos de Fenilureia , Canais de Potássio , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , beta Catenina/metabolismo
3.
Redox Biol ; 52: 102304, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35413643

RESUMO

As essential regulators of mitochondrial quality control, mitochondrial dynamics and mitophagy play key roles in maintenance of metabolic health and cellular homeostasis. Here we show that knockdown of the membrane-inserted scaffolding and structural protein caveolin-1 (Cav-1) and expression of tyrosine 14 phospho-defective Cav-1 mutant (Y14F), as opposed to phospho-mimicking Y14D, altered mitochondrial morphology, and increased mitochondrial matrix mixing, mitochondrial fusion and fission dynamics as well as mitophagy in MDA-MB-231 triple negative breast cancer cells. Further, we found that interaction of Cav-1 with mitochondrial fusion/fission machinery Mitofusin 2 (Mfn2) and Dynamin related protein 1 (Drp1) was enhanced by Y14D mutant indicating Cav-1 Y14 phosphorylation prevented Mfn2 and Drp1 translocation to mitochondria. Moreover, limiting mitochondrial recruitment of Mfn2 diminished formation of the PINK1/Mfn2/Parkin complex required for initiation of mitophagy resulting in accumulation of damaged mitochondria and ROS (mtROS). Thus, these studies indicate that phospho-Cav-1 may be an important switch mechanism in cancer cell survival which could lead to novel strategies for complementing cancer therapies.


Assuntos
Caveolina 1 , Mitofagia , Caveolina 1/genética , Caveolina 1/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitofagia/fisiologia , Espécies Reativas de Oxigênio/metabolismo
4.
Rev Physiol Biochem Pharmacol ; 183: 135-155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34291318

RESUMO

Cancer is a collection of diseases caused by specific changes at the genomic level that support cell proliferation indefinitely. Traditionally, ion channels are known to control a variety of cellular processes including electrical signal generation and transmission, secretion, and contraction by controlling ionic gradients. However, recent studies had brought to light important facts on ion channels in cancer biology.In this review we discuss the mechanism linking potassium or chloride ion channel activity to biochemical pathways controlling proliferation in cancer cells and the potential advantages of targeting ion channels as an anticancer therapeutic option.


Assuntos
Neoplasias , Potássio , Canais de Cloreto/metabolismo , Canais de Cloreto/uso terapêutico , Cloretos/metabolismo , Cloretos/uso terapêutico , Humanos , Canais Iônicos , Neoplasias/genética , Potássio/metabolismo
5.
Cancers (Basel) ; 13(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885136

RESUMO

Control of ionic gradients is critical to maintain cellular homeostasis in both physiological and pathological conditions, but the role of ion channels in cancer cells has not been studied thoroughly. In this work we demonstrated that activity of the Kv11.1 potassium channel plays a vital role in controlling the migration of colon cancer cells by reversing the epithelial-to-mesenchymal transition (EMT) into the mesenchymal-to-epithelial transition (MET). We discovered that pharmacological stimulation of the Kv11.1 channel with the activator molecule NS1643 produces a strong inhibition of colon cancer cell motility. In agreement with the reversal of EMT, NS1643 treatment leads to a depletion of mesenchymal markers such as SNAIL1, SLUG, TWIST, ZEB, N-cadherin, and c-Myc, while the epithelial marker E-cadherin was strongly upregulated. Investigating the mechanism linking Kv11.1 activity to reversal of EMT into MET revealed that stimulation of Kv11.1 produced a strong and fast inhibition of the TGFß signaling. Application of NS1643 resulted in de-phosphorylation of the TGFß downstream effectors R-SMADs by activation of the serine/threonine phosphatase PP2B (calcineurin). Consistent with the role of TGFß in controlling cancer stemness, NS1643 also produced a strong inhibition of NANOG, SOX2, and OCT4 while arresting the cell cycle in G0/G1. Our data demonstrate that activation of the Kv11.1 channel reprograms EMT into MET by inhibiting TGFß signaling, which results in inhibition of motility in colon cancer cells.

6.
Redox Biol ; 45: 102030, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34147842

RESUMO

Potassium channels are important regulators of cellular homeostasis and targeting these proteins pharmacologically is unveiling important mechanisms in cancer cell biology. Here we demonstrate that pharmacological stimulation of the Kv11.1 potassium channel activity results in mitochondrial reactive oxygen species (ROS) production and fragmentation in breast cancer cell lines and patient-derived organoids independent of breast cancer subtype. mRNA expression profiling revealed that Kv11.1 activity significantly altered expression of genes controlling the production of ROS and endoplasmic-reticulum (ER) stress. Characterization of the transcriptional signature of breast cancer cells treated with Kv11.1 potassium channel activators strikingly revealed an adaptive response to the potentially lethal augmentation of ROS by increasing Nrf2-dependent transcription of antioxidant genes. Nrf2 in this context was shown to promote survival in breast cancer, whereas knockdown of Nrf2 lead to Kv11.1-induced cell death. In conclusion, we found that the Kv11.1 channel activity promotes oxidative stress in breast cancer cells and that suppression of the Nrf2-mediated anti-oxidant survival mechanism strongly sensitized breast cancer cells to a lethal effect of pharmacological activation of Kv11.1.


Assuntos
Antioxidantes , Neoplasias da Mama , Antioxidantes/farmacologia , Neoplasias da Mama/genética , Estresse do Retículo Endoplasmático , Feminino , Humanos , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Oxigênio
7.
Front Oncol ; 11: 609918, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868996

RESUMO

Breast tumors contain both transformed epithelial cells and non-transformed stroma cells producing secreted factors that can promote metastasis. Previously, we demonstrated that the kinase MEKK1 regulates cell migration and gene expression, and that transgene-induced breast tumor metastasis is markedly inhibited in MEKK1-deficient mice. In this report, we examined the role of MEKK1 in stroma cell gene expression and the consequent effect on breast tumor cell function. Using a heterotypic cell system to quantify the effect of stroma cells on breast tumor cell function, we discovered that MEKK1-/- fibroblasts are significantly less effective at inducing tumor cell invasion than MEKK1+/+ fibroblasts. Expression array analysis revealed that both baseline and tumor cell-induced expression of the chemokines CCL3, CCL4, and CCL5 were markedly reduced in MEKK1-/- mammary fibroblasts. By focusing on the role of MEKK1 in CCL5 regulation, we discovered that MEKK1 kinase activity promotes CCL5 expression, and inactive mutant MEKK1 strongly inhibits CCL5 transcription. CCL5 and the other MEKK1-dependent chemokines are ligands for the GPCR CCR5, and we show that the CCR5 antagonist Maraviroc strongly inhibits fibroblast-induced tumor cell migration. Finally, we report that fibroblast growth factor 5 (FGF-5) is secreted by MDA-MB 231 cells, that FGF-5 activates MEKK1 effectors ERK1/2 and NFκB in fibroblasts, and that chemical inhibition of NFκB inhibits CCL5 expression. Our results suggest that MEKK1 contributes to the formation of a breast tumor microenvironment that supports metastasis by promoting expression of stroma cell chemokine genes in response to tumor cell-induced paracrine signaling.

8.
Cell Rep Med ; 2(12): 100471, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35028612

RESUMO

Resistance to platinum compounds is a major determinant of patient survival in high-grade serous ovarian cancer (HGSOC). To understand mechanisms of platinum resistance and identify potential therapeutic targets in resistant HGSOC, we generated a data resource composed of dynamic (±carboplatin) protein, post-translational modification, and RNA sequencing (RNA-seq) profiles from intra-patient cell line pairs derived from 3 HGSOC patients before and after acquiring platinum resistance. These profiles reveal extensive responses to carboplatin that differ between sensitive and resistant cells. Higher fatty acid oxidation (FAO) pathway expression is associated with platinum resistance, and both pharmacologic inhibition and CRISPR knockout of carnitine palmitoyltransferase 1A (CPT1A), which represents a rate limiting step of FAO, sensitize HGSOC cells to platinum. The results are further validated in patient-derived xenograft models, indicating that CPT1A is a candidate therapeutic target to overcome platinum resistance. All multiomic data can be queried via an intuitive gene-query user interface (https://sites.google.com/view/ptrc-cell-line).


Assuntos
Carboplatina/uso terapêutico , Carnitina O-Palmitoiltransferase/metabolismo , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Genômica , Terapia de Alvo Molecular , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carboplatina/farmacologia , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Carnitina O-Palmitoiltransferase/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cistadenocarcinoma Seroso/tratamento farmacológico , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ácidos Graxos/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos SCID , Gradação de Tumores , Neoplasias Ovarianas/tratamento farmacológico , Oxirredução/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Fosfoproteínas/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo
9.
Front Pharmacol ; 11: 577, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457608

RESUMO

Gynecologic cancers are among the most lethal cancers found in women, and, advanced stage cancers are still a treatment challenge. Ion channels are known to contribute to cellular homeostasis in all cells and mounting evidence indicates that ion channels could be considered potential therapeutic targets against cancer. Nevertheless, the pharmacologic effect of targeting ion channels in cancer is still understudied. We found that the expression of Kir6.2/SUR2 potassium channel is a potential favorable prognostic factor in gynecologic cancers. Also, pharmacological stimulation of the Kir6.2/SUR2 channel activity with the selective activator molecule minoxidil arrests tumor growth in a xenograft model of ovarian cancer. Investigation on the mechanism linking the Kir6.2/SUR2 to tumor growth revealed that minoxidil alters the metabolic and oxidative state of cancer cells by producing mitochondrial disruption and extensive DNA damage. Consequently, application of minoxidil results in activation of a caspase-3 independent cell death pathway. Our data show that repurposing of FDA approved K+ channel activators may represent a novel, safe adjuvant therapeutic approach to traditional chemotherapy for the treatment of gynecologic cancers.

10.
Cell Death Dis ; 10(3): 180, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792401

RESUMO

Potassium ion channels are critical in the regulation of cell motility. The acquisition of cell motility is an essential parameter of cancer metastasis. However, the role of K+ channels in cancer metastasis has been poorly studied. High expression of the hG1 gene, which encodes for Kv11.1 channel associates with good prognosis in estrogen receptor-negative breast cancer (BC). We evaluated the efficacy of the Kv11.1 activator NS1643 in arresting metastasis in a triple negative breast cancer (TNBC) mouse model. NS1643 significantly reduces the metastatic spread of breast tumors in vivo by inhibiting cell motility, reprogramming epithelial-mesenchymal transition via attenuation of Wnt/ß-catenin signaling and suppressing cancer cell stemness. Our findings provide important information regarding the clinical relevance of potassium ion channel expression in breast tumors and the mechanisms by which potassium channel activity can modulate tumor biology. Findings suggest that Kv11.1 activators may represent a novel therapeutic approach for the treatment of metastatic estrogen receptor-negative BC. Ion channels are critical factor for cell motility but little is known about their role in metastasis. Stimulation of the Kv11.1 channel suppress the metastatic phenotype in TNBC. This work could represent a paradigm-shifting approach to reducing mortality by targeting a pathway that is central to the development of metastases.


Assuntos
Canal de Potássio ERG1/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias de Mama Triplo Negativas/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cresóis/farmacologia , Cresóis/uso terapêutico , Canal de Potássio ERG1/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Células MCF-7 , Camundongos , Metástase Neoplásica , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Transplante Heterólogo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , beta Catenina/antagonistas & inibidores , beta Catenina/genética
11.
Oncotarget ; 9(3): 3321-3337, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29423049

RESUMO

Potassium ion (K+) channels have been recently found to play a critical role in cancer biology. Despite that pharmacologic manipulation of ion channels is recognized as an important therapeutic approach, very little is known about the effects of targeting of K+ channels in cancer. In this study, we demonstrate that use of the Kv11.1 K+ channel activator NS1643 inhibits tumor growth in an in vivo model of breast cancer. Tumors exposed to NS1643 had reduced levels of proliferation markers, high expression levels of senescence markers, increased production of ROS and DNA damage compared to tumors of untreated mice. Importantly, mice treated with NS1643 did not exhibit significant cardiac dysfunction. In conclusion, pharmacological stimulation of Kv11.1 activity produced arrested TNBC-derived tumor growth by generating DNA damage and senescence without significant side effects. We propose that use of Kv11.1 channels activators could be considered as a possible pharmacological strategy against breast tumors.

12.
J Nat Prod ; 80(3): 659-669, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28234008

RESUMO

(+)-Strebloside, a cardiac glycoside isolated from the stem bark of Streblus asper collected in Vietnam, has shown some potential for further investigation as an antineoplastic agent. A mechanistic study using an in vitro assay and molecular docking analysis indicated that (+)-strebloside binds and inhibits Na+/K+-ATPase in a similar manner to digitoxin. Inhibition of growth of different high-grade serous ovarian cancer cells including OVCAR3, OVSAHO, Kuramochi, OVCAR4, OVCAR5, and OVCAR8 resulted from treatment with (+)-strebloside. Furthermore, this compound blocked cell cycle progression at the G2 phase and induced PARP cleavage, indicating apoptosis activation in OVCAR3 cells. (+)-Strebloside potently inhibited mutant p53 expression through the induction of ERK pathways and inhibited NF-κB activity in human ovarian cancer cells. However, in spite of its antitumor potential, the overall biological activity of (+)-strebloside must be regarded as being typical of better-known cardiac glycosides such as digoxin and ouabain. Further chemical alteration of cardiac glycosides might help to reduce negative side effects while increasing cancer cell cytotoxicity.


Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Glicosídeos Cardíacos/isolamento & purificação , Glicosídeos Cardíacos/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Carcinoma Epitelial do Ovário , Glicosídeos Cardíacos/química , Digoxina/farmacologia , Feminino , Células HT29 , Humanos , Estrutura Molecular , NF-kappa B/metabolismo , Neoplasias Epiteliais e Glandulares , Ouabaína/farmacologia , Neoplasias Ovarianas , Transdução de Sinais/efeitos dos fármacos , Estereoisomerismo
13.
Eur Biophys J ; 45(7): 649-655, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27649700

RESUMO

It has been well established that changes in ion fluxes across cellular membranes as a function of time is fundamental in maintaining cellular homeostasis of every living cell. Consequently, dysregulation of ion channels activity is a critical event in pathological conditions of several tissues, including cancer. Nevertheless, the role of ion channels in cancer biology is still not well understood and very little is known about the possible therapeutic opportunities offered by the use of the vast collection of drugs that target ion channels. In this review, we focus on the recent advances in understanding the role of the voltage-gated hERG1 potassium channel in cancer and on the effects of pharmacologic manipulation of the hERG1 in cancer cells aiming to provide insights into the biochemical signaling and cellular processes that are altered by using these drugs.


Assuntos
Canal de Potássio ERG1/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Humanos , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Oncotarget ; 7(16): 21991-2004, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26942884

RESUMO

Ion channels play a major factor in maintaining cellular homeostasis but very little is known about the role of these proteins in cancer biology. In this work we have discovered that, the Kv11.3 (hERG3) a plasma-membrane potassium channel plays a critical role in the regulation of autophagy in a cancer cell model. We have found that pharmacologic stimulation of the Kv11.3 channel with a small molecule activator, NS1643 induced autophagy via activation of an AMPK-dependent signaling pathway in melanoma cell line. In addition, we have found that NS1643 produced a strong inhibition of cell proliferation by activating a cellular senescence program. Furthermore, inhibition of autophagy via siRNA targeting AMPK or treatment with hydroxychloroquine an autophagy inhibitor activates apoptosis in NS1643-treated cells. Thus, we propose that, Kv11.3 is a novel mediator of autophagy, autophagy can be a survival mechanism contributing to cellular senescence, and that use of a combinatorial pharmacologic approach of Kv11.3 activator with inhibitors of autophagy represents a novel therapeutic approach against melanoma.


Assuntos
Autofagia/fisiologia , Senescência Celular/fisiologia , Canais de Potássio Éter-A-Go-Go/metabolismo , Melanoma/patologia , Linhagem Celular Tumoral , Humanos , Melanoma/metabolismo
15.
Oncotarget ; 7(37): 58893-58902, 2016 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-25945833

RESUMO

The function of Kv11.1 is emerging in breast cancer biology, as a growing body of evidence indicates that the hERG1/Kv11.1 potassium channel is aberrantly expressed in several cancer types including breast cancers.The biological effects of Kv11.1 channel blockers and their associated side effects are very well known but the potential use of Kv11.1 activators as an anticancer strategy are still unexplored. In our previous work, we have established that stimulation of the Kv11.1 potassium channel activates a senescent-like program that is characterized by a significant increase in tumor suppressor protein levels, such as p21waf/cip and p16INK4A. In this study we investigated the mechanism linking Kv11.1 stimulation to augmentation of p21waf/cip protein level. We have demonstrated that the Kv11.1 channel activator NS1643 activates a calcineurin-dependent transcription of p21waf/cip and that this event is fundamental for the inhibitory effect of NS1643 on cell proliferation. Our results reveal a novel mechanism by which stimulation of Kv11.1 channel leads to transcription of a potent tumor suppressor and suggest a potential therapeutic use for Kv11.1 channel activators.


Assuntos
Apolipoproteínas A/metabolismo , Neoplasias da Mama/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fragmentos de Peptídeos/metabolismo , Transcrição Gênica , Neoplasias da Mama/metabolismo , Calcineurina/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Senescência Celular , Cresóis/farmacologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p21/agonistas , Inibidor de Quinase Dependente de Ciclina p21/genética , Feminino , Humanos , Mutação/genética , Compostos de Fenilureia/farmacologia , Regulação para Cima
16.
Cancers (Basel) ; 7(2): 849-75, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-26010603

RESUMO

Changes of the electrical charges across the surface cell membrane are absolutely necessary to maintain cellular homeostasis in physiological as well as in pathological conditions. The opening of ion channels alter the charge distribution across the surface membrane as they allow the diffusion of ions such as K+, Ca++, Cl.

17.
Oncotarget ; 6(3): 1631-9, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25596745

RESUMO

Cyclin E2 gene amplification, but not cyclin E1, has been recently defined as marker for poor prognosis in breast cancer, and appears to play a major role in proliferation and therapeutic resistance in several breast cancer cells. Our laboratory has previously reported that stimulation of the hERG1 potassium channel with selective activators led to down-regulation of cyclin E2 in breast cancer cells. In this work, we demonstrate that stimulation of hERG1 promotes an ubiquitin-proteasome-dependent degradation of cyclin E2 in multiple breast cancer cell lines representing Luminal A, HER2+ and Trastuzumab-resistant breast cancer cells. In addition we have also reveal that hERG1 stimulation induces an increase in intracellular calcium that is required for cyclin E2 degradation. This novel function for hERG1 activity was specific for cyclin E2, as cyclins A, B, D E1 were unaltered by the treatment. Our results reveal a novel mechanism by which hERG1 activation impacts the tumor marker cyclin E2 that is independent of cyclin E1, and suggest a potential therapeutic use for hERG1 channel activators.


Assuntos
Neoplasias da Mama/metabolismo , Cálcio/metabolismo , Ciclina E/metabolismo , Ciclinas/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Proteínas Oncogênicas/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Ciclinas/genética , Regulação para Baixo , Feminino , Humanos
18.
Biochem J ; 464(1): 99-108, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25190348

RESUMO

The intracellular kinase MEKK2 (mitogen-activated protein kinase/extracellular-signal-regulated kinase kinase kinase 2) is an upstream regulator of JNK (c-Jun N-terminal kinase), but additional functions for MEKK2 have not been well defined. Silencing MEKK2 expression in invasive breast tumour cells markedly inhibits xenograft metastasis, indicating that MEKK2 controls tumour cell function required for tumour progression. In our previous investigation of MEKK2 function, we discovered that tumour cell attachment to fibronectin recruits MEKK2 to focal adhesion complexes, and that MEKK2 knockdown is associated with stabilized focal adhesions and significant inhibition of tumour cell migration. In the present study we investigate MEKK2 function in focal adhesions and we report that MEKK2 physically associates with the LD1 motif of the focal adhesion protein paxillin. We reveal that MEKK2 induces paxillin ubiquitylation, and that this function requires both the paxillin LD1 motif and MEKK2 kinase activity. Finally, we demonstrate that MEKK2 promotes paxillin redistribution from focal adhesions into the cytoplasm, but does not promote paxillin degradation. Taken together, our results reveal a novel function for MEKK2 as a regulator of ubiquitylation-dependent paxillin redistribution in breast tumour cells.


Assuntos
Neoplasias da Mama/metabolismo , MAP Quinase Quinase Quinases/fisiologia , Paxilina/metabolismo , Ubiquitinação/fisiologia , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , MAP Quinase Quinase Quinase 2 , Células MCF-7 , Paxilina/análise
19.
Endocrinology ; 155(9): 3713-24, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24932806

RESUMO

Several rapid physiological effects of thyroid hormone on mammalian cells in vitro have been shown to be mediated by the phosphatidylinositol 3-kinase (PI3K), but the molecular mechanism of PI3K regulation by nuclear zinc finger receptor proteins for thyroid hormone and its relevance to brain development in vivo have not been elucidated. Here we show that, in the absence of hormone, the thyroid hormone receptor TRß forms a cytoplasmic complex with the p85 subunit of PI3K and the Src family tyrosine kinase, Lyn, which depends on two canonical phosphotyrosine motifs in the second zinc finger of TRß that are not conserved in TRα. When hormone is added, TRß dissociates and moves to the nucleus, and phosphatidylinositol (3, 4, 5)-trisphosphate production goes up rapidly. Mutating either tyrosine to a phenylalanine prevents rapid signaling through PI3K but does not prevent the hormone-dependent transcription of genes with a thyroid hormone response element. When the rapid signaling mechanism was blocked chronically throughout development in mice by a targeted point mutation in both alleles of Thrb, circulating hormone levels, TRß expression, and direct gene regulation by TRß in the pituitary and liver were all unaffected. However, the mutation significantly impaired maturation and plasticity of the Schaffer collateral synapses on CA1 pyramidal neurons in the postnatal hippocampus. Thus, phosphotyrosine-dependent association of TRß with PI3K provides a potential mechanism for integrating regulation of development and metabolism by thyroid hormone and receptor tyrosine kinases.


Assuntos
Núcleo Celular/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Citoplasma/metabolismo , Hipocampo/metabolismo , Sinapses/metabolismo , Receptores beta dos Hormônios Tireóideos/metabolismo , Animais , Núcleo Celular/genética , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Citoplasma/genética , Hipocampo/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Ligação Proteica , Transporte Proteico , Sinapses/enzimologia , Receptores beta dos Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
20.
Prog Mol Biol Transl Sci ; 117: 269-302, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23663972

RESUMO

Voltage-activated potassium channels (Kv channels) are ubiquitously expressed proteins that subserve a wide range of cellular functions. From their birth in the endoplasmic reticulum, Kv channels assemble from multiple subunits in complex ways that determine where they live in the cell, their biophysical characteristics, and their role in enabling different kinds of cells to respond to specific environmental signals to generate appropriate functional responses. This chapter describes the types of protein-protein interactions among pore-forming channel subunits and their auxiliary protein partners, as well as posttranslational protein modifications that occur in various cell types. This complex oligomerization of channel subunits establishes precise cell type-specific Kv channel localization and function, which in turn drives a diverse range of cellular signal transduction mechanisms uniquely suited to the physiological contexts in which they are found.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Mapas de Interação de Proteínas , Animais , Humanos , Ativação do Canal Iônico , Modelos Moleculares , Multimerização Proteica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...