Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(4): 841-854.e4, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38325376

RESUMO

Sequential neural dynamics encoded by time cells play a crucial role in hippocampal function. However, the role of hippocampal sequential neural dynamics in associative learning is an open question. We used two-photon Ca2+ imaging of dorsal CA1 (dCA1) neurons in the stratum pyramidale (SP) in head-fixed mice performing a go-no go associative learning task to investigate how odor valence is temporally encoded in this area of the brain. We found that SP cells responded differentially to the rewarded or unrewarded odor. The stimuli were decoded accurately from the activity of the neuronal ensemble, and accuracy increased substantially as the animal learned to differentiate the stimuli. Decoding the stimulus from individual SP cells responding differentially revealed that decision-making took place at discrete times after stimulus presentation. Lick prediction decoded from the ensemble activity of cells in dCA1 correlated linearly with lick behavior. Our findings indicate that sequential activity of SP cells in dCA1 constitutes a temporal memory map used for decision-making in associative learning. VIDEO ABSTRACT.


Assuntos
Região CA1 Hipocampal , Hipocampo , Camundongos , Animais , Região CA1 Hipocampal/fisiologia , Neurônios/fisiologia , Aprendizagem , Condicionamento Clássico
2.
Biomed Opt Express ; 14(7): 3705-3725, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37497482

RESUMO

We demonstrate a gradient refractive index (GRIN) microendoscope with an outer diameter of ∼1.2 mm and a length of ∼186 mm that can fit into a stereotactic surgical cannula. Two photon imaging at an excitation wavelength of 900 nm showed a field of view of ∼180 microns and a lateral and axial resolution of 0.86 microns and 9.6 microns respectively. The microendoscope was tested by imaging autofluorescence and second harmonic generation (SHG) in label-free human brain tissue. Furthermore, preliminary image analysis indicates that image classification models can predict if an image is from the subthalamic nucleus or the surrounding tissue using conventional, bench-top two-photon autofluorescence.

3.
Neurobiol Aging ; 123: 75-82, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36638683

RESUMO

Alzheimer's disease (AD) is characterized by deficits in olfaction and olfactory pathology preceding diagnosis of dementia. Here we analyzed differential gene and protein expression in the olfactory bulb (OB) and tract (OT) of familial AD (FAD) individuals carrying the autosomal dominant presenilin 1 E280A mutation. Compared to control, FAD OT had increased immunostaining for ß-amyloid (Aß) and CD68 in high and low myelinated regions, as well as increased immunostaining for Iba1 in the high myelinated region. In FAD samples, RNA sequencing showed: (1) viral infection in the OB; (2) inflammation in the OT that carries information via entorhinal cortex from the OB to hippocampus, a brain region essential for learning and memory; and (3) decreased oligodendrocyte deconvolved transcripts. Interestingly, spatial proteomic analysis confirmed altered myelination in the OT of FAD individuals, implying dysfunction of communication between the OB and hippocampus. These findings raise the possibility that viral infection and associated inflammation and dysregulation of myelination of the olfactory system may disrupt hippocampal function, contributing to acceleration of FAD progression.


Assuntos
Doença de Alzheimer , Viroses , Humanos , Doença de Alzheimer/metabolismo , Proteômica , Peptídeos beta-Amiloides/metabolismo , Bulbo Olfatório/metabolismo , Inflamação/genética , Inflamação/patologia , Viroses/patologia , Presenilina-1/genética , Presenilina-1/metabolismo
4.
J Neurosci ; 42(8): 1491-1509, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35022219

RESUMO

The axon initial segment (AIS), nodes of Ranvier, and the oligodendrocyte-derived myelin sheath have significant influence on the firing patterns of neurons and the faithful, coordinated transmission of action potentials (APs) to downstream brain regions. In the olfactory bulb (OB), olfactory discrimination tasks lead to adaptive changes in cell firing patterns, and the output signals must reliably travel large distances to other brain regions along highly myelinated tracts. Whether myelinated axons adapt to facilitate olfactory sensory processing is unknown. Here, we investigate the morphology and physiology of mitral cell (MC) axons in the olfactory system of adult male and female mice and show that unilateral sensory deprivation causes system-wide adaptations in axonal morphology and myelin thickness. MC spiking patterns and APs also adapted to sensory deprivation. Strikingly, myelination and MC physiology were altered on both the deprived and nondeprived sides, indicating system level adaptations to reduced sensory input. Our work demonstrates a previously unstudied mechanism of plasticity in the olfactory system.SIGNIFICANCE STATEMENT Successful transmission of information from the olfactory bulb (OB) to piriform cortex through the lateral olfactory tract (LOT) relies on synchronized arrival of action potentials (APs). The coincident arrival of APs is dependent on reliable generation of APs in the axon initial segment (AIS) and fast conduction mediated by axon myelination. Here, we studied changes in mitral cell (MC) firing and AIS structure as well as changes in myelination of the LOT on unilateral olfactory deprivation in the adult mouse. Strikingly, myelination and MC physiology were altered on both the deprived and nondeprived sides, indicating system level adaptations to reduced sensory input. Our work demonstrates a previously unstudied mechanism of plasticity in the olfactory system.


Assuntos
Axônios , Privação Sensorial , Animais , Axônios/fisiologia , Feminino , Masculino , Camundongos , Bainha de Mielina/fisiologia , Bulbo Olfatório/fisiologia , Privação Sensorial/fisiologia , Olfato/fisiologia
5.
Front Neural Circuits ; 15: 718348, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512276

RESUMO

Neuromodulatory systems may provide information on social context to auditory brain regions, but relatively few studies have assessed the effects of neuromodulation on auditory responses to acoustic social signals. To address this issue, we measured the influence of the serotonergic system on the responses of neurons in a mouse auditory midbrain nucleus, the inferior colliculus (IC), to vocal signals. Broadband vocalizations (BBVs) are human-audible signals produced by mice in distress as well as by female mice in opposite-sex interactions. The production of BBVs is context-dependent in that they are produced both at early stages of interactions as females physically reject males and at later stages as males mount females. Serotonin in the IC of males corresponds to these events, and is elevated more in males that experience less female rejection. We measured the responses of single IC neurons to five recorded examples of BBVs in anesthetized mice. We then locally activated the 5-HT1A receptor through iontophoretic application of 8-OH-DPAT. IC neurons showed little selectivity for different BBVs, but spike trains were characterized by local regions of high spike probability, which we called "response features." Response features varied across neurons and also across calls for individual neurons, ranging from 1 to 7 response features for responses of single neurons to single calls. 8-OH-DPAT suppressed spikes and also reduced the numbers of response features. The weakest response features were the most likely to disappear, suggestive of an "iceberg"-like effect in which activation of the 5-HT1A receptor suppressed weakly suprathreshold response features below the spiking threshold. Because serotonin in the IC is more likely to be elevated for mounting-associated BBVs than for rejection-associated BBVs, these effects of the 5-HT1A receptor could contribute to the differential auditory processing of BBVs in different behavioral subcontexts.


Assuntos
Colículos Inferiores , Receptor 5-HT1A de Serotonina/fisiologia , Vocalização Animal , Estimulação Acústica , Animais , Percepção Auditiva , Feminino , Colículos Inferiores/fisiologia , Masculino , Mesencéfalo , Camundongos , Serotonina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...