Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 1(10): 996-1008, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-32694842

RESUMO

Ischaemic heart disease and stroke are the most common causes of death worldwide. Anoxia, defined as the lack of oxygen, is commonly seen in both these pathologies and triggers profound metabolic and cellular changes. Sphingolipids have been implicated in anoxia injury, but the pathomechanism is unknown. Here we show that anoxia-associated injury causes accumulation of the non-canonical sphingolipid 1-deoxydihydroceramide (DoxDHCer). Anoxia causes an imbalance between serine and alanine resulting in a switch from normal serine-derived sphinganine biosynthesis to non-canonical alanine-derived 1-deoxysphinganine. 1-Deoxysphinganine is incorporated into DoxDHCer, which impairs actin folding via the cytosolic chaperonin TRiC, leading to growth arrest in yeast, increased cell death upon anoxia-reoxygenation in worms and ischaemia-reperfusion injury in mouse hearts. Prevention of DoxDHCer accumulation in worms and in mouse hearts resulted in decreased anoxia-induced injury. These findings unravel key metabolic changes during oxygen deprivation and point to novel strategies to avoid tissue damage and death.


Assuntos
Chaperoninas/metabolismo , Hipóxia/induzido quimicamente , Dobramento de Proteína/efeitos dos fármacos , Alanina/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Divisão Celular , Chaperoninas/genética , Comportamento Alimentar , Canais Iônicos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
2.
Science ; 324(5925): 381-4, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19372430

RESUMO

Oxygen deprivation is rapidly deleterious for most organisms. However, Caenorhabditis elegans has developed the ability to survive anoxia for at least 48 hours. Mutations in the DAF-2/DAF-16 insulin-like signaling pathway promote such survival. We describe a pathway involving the HYL-2 ceramide synthase that acts independently of DAF-2. Loss of the ceramide synthase gene hyl-2 results in increased sensitivity of C. elegans to anoxia. C. elegans has two ceramide synthases, hyl-1 and hyl-2, that participate in ceramide biogenesis and affect its ability to survive anoxic conditions. In contrast to hyl-2(lf) mutants, hyl-1(lf) mutants are more resistant to anoxia than normal animals. HYL-1 and HYL-2 have complementary specificities for fatty acyl chains. These data indicate that specific ceramides produced by HYL-2 confer resistance to anoxia.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Hipóxia Celular , Ceramidas/fisiologia , Oxirredutases/genética , Oxirredutases/metabolismo , Oxigênio/fisiologia , Animais , Apoptose , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Ceramidas/biossíntese , Deleção de Genes , Genes de Helmintos , Mutação , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/fisiologia , Esfingomielinas/biossíntese , Esfingomielinas/fisiologia , Especificidade por Substrato , Transformação Genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...