Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Crystallogr ; 56(Pt 2): 526-538, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37032970

RESUMO

Two data evaluation concepts for X-ray stress analysis based on energy-dispersive diffraction on polycrystalline materials with cubic crystal structure, almost random crystallographic texture and strong single-crystal elastic anisotropy are subjected to comparative assessment. The aim is the study of the residual stress state in hard-to-reach measurement points, for which the sin2ψ method is not applicable due to beam shadowing at larger sample tilting. This makes the approaches attractive for stress analysis in engineering parts with complex shapes, for example. Both approaches are based on the assumption of a biaxial stress state within the irradiated sample volume. They exploit in different ways the elastic anisotropy of individual crystallites acting at the microscopic scale and the anisotropy imposed on the material by the near-surface stress state at the macroscopic scale. They therefore complement each other, in terms of both their preconditions and their results. The first approach is based on the evaluation of strain differences, which makes it less sensitive to variations in the strain-free lattice parameter a 0. Since it assumes a homogeneous stress state within the irradiated sample volume, it provides an average value of the in-plane stresses. The second approach exploits the sensitivity of the lattice strain to changes in a 0. Consequently, it assumes a homogeneous chemical composition but provides a stress profile within the information depth. Experimental examples from different fields in materials science, namely shot peening of austenitic steel and in situ stress analysis during welding, are presented to demonstrate the suitability of the proposed methods.

2.
Materials (Basel) ; 14(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206514

RESUMO

Nickel(Ni)/aluminium(Al) hybrid foams are Al base foams coated with Ni by electrodeposition. Hybrid foams offer an enhanced energy absorption capacity. To ensure a good adhering Ni coating, necessary for a shear resistant interface, the influence of a chemical pre-treatment of the base foam was investigated by a combination of an interface morphology analysis by focused ion beam (FIB) tomography and in situ mechanical testing. The critical energy for interfacial decohesion from these microbending fracture tests in the scanning electron microscope (SEM) were contrasted to and the results validated by depth-resolved measurements of the evolving stresses in the Ni coating during three-point bending tests at the energy-dispersive diffraction (EDDI) beamline at the synchrotron BESSY II. Such a multi-method assessment of the interface decohesion resistance with respect to the interface morphology provides a reliable investigation strategy for further improvement of the interface morphology.

3.
J Appl Crystallogr ; 54(Pt 1): 22-31, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33833638

RESUMO

Two evaluation concepts for nondestructive depth-resolved X-ray residual stress analysis in the near-surface region of materials with cubic symmetry and nearly single crystalline structure are introduced by simulated examples. Both concepts are based on the same data acquisition strategy, which consists in the determination of lattice-spacing depth profiles along the 〈hkl〉 poles by stepwise sample rotation around the scattering vector. Segmentation of these profiles parallel to the sample surface provides the lattice strain state as a function of depth. The first evaluation concept extends the crystallite group method developed for materials with pronounced crystallographic texture by the feature of depth resolution and can be applied to samples with arbitrary orientation. The second evaluation concept, which adapts the linear regression approach of the sin2ψ method for the case of single crystalline materials, is restricted to samples with (001) orientation. The influence of the strain-free lattice parameter a 0 on residual stress analysis using both evaluation concepts is discussed on the basis of explicitly derived relations.

4.
J Appl Crystallogr ; 54(Pt 1): 32-41, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33833639

RESUMO

Energy-dispersive diffraction under both laboratory and synchrotron conditions was applied to study the hoop stress in the near-surface region of the inner wall of boreholes with a small diameter of 2 mm. By use of different X-ray beam cross sections for the sin2ψ measurements, it is demonstrated that the borehole-to-beam-diameter ratio must be considered in the evaluation. A beam cross section which is comparable to the borehole diameter reduces the slope of the d hkl φψ-sin2ψ distributions and thus invalidates the result of stress analysis. A quantitative relationship is applied, which allows the results obtained under the above conditions to be scaled so that they reflect the actual residual stress state at the measurement position. Owing to the small diffraction angles, energy-dispersive diffraction proves to be the only suitable experimental technique that allows a nondestructive and depth-resolved analysis of the hoop stress component at the inner surface of boreholes with a large length-to-diameter ratio.

5.
J Appl Crystallogr ; 53(Pt 4): 1130-1137, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32788906

RESUMO

EDDIDAT is a MATLAB-based graphical user interface for the convenient and versatile analysis of energy-dispersive diffraction data obtained at laboratory and synchrotron sources. The main focus of EDDIDAT up to now has been on the analysis of residual stresses, but it can also be used to prepare measurement data for subsequent phase analysis or analysis of preferred orientation. The program provides access to the depth-resolved analysis of residual stresses at different levels of approximation. Furthermore, the graphic representation of the results also serves for the consideration of microstructural and texture-related properties. The included material database allows for the quick analysis of the most common materials and is easily extendable. The plots and results produced with EDDIDAT can be exported to graphics and text files. EDDIDAT is designed to analyze diffraction data from various energy-dispersive X-ray sources. Hence it is possible to add new sources and implement the device-specific properties into EDDIDAT. The program is freely available to academic users.

6.
J Synchrotron Radiat ; 26(Pt 5): 1612-1620, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490151

RESUMO

The lattice parameters and unit-cell orientation of an SrLaAlO4 crystal have been determined by means of energy-dispersive X-ray Laue diffraction (EDLD) using a pnCCD detector coupled to a columnar structure CsI(Tl) scintillator in the energy range between 40 and 130 keV. By exploiting the high quantum efficiency (QE) achieved by this combined detection system for hard X-rays, a large number of Bragg reflections could be recorded by the relatively small detector area, allowing accurate and fast determination of the lattice parameters and the moduli of the structure factors. The experiment was performed on the energy-dispersive diffraction (EDDI) beamline at the BESSY II synchrotron using a pnCCD detector with 128 × 128 pixels. Since the energies and positions of the Laue peaks can be recorded simultaneously by the pnCCD system, the tetragonal structure of the investigated specimen was determined without any prior information. The unit-cell parameters and the angles between the lattice vectors were evaluated with an accuracy of better than 0.7%, while the structure-factor moduli of the reflections were determined with a mean deviation of 2.5% relative to the theoretical values.


Assuntos
Monitoramento de Radiação/instrumentação , Espectrometria por Raios X/instrumentação , Difração de Raios X/instrumentação , Síncrotrons , Raios X
7.
J Synchrotron Radiat ; 25(Pt 6): 1790-1796, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407191

RESUMO

High-speed X-ray imaging in two dimensions (radioscopy) and three dimensions (tomography) is combined with fast X-ray diffraction in a new experimental setup at the synchrotron radiation source BESSY II. It allows for in situ studies of time-dependent phenomena in complex systems. As a first application, the foaming process of an aluminium alloy was studied in three different experiments. Radioscopy, optical expansion measurements and diffraction were used to correlate the change of foam morphology to the various phases formed during heating of an AlMg15Cu10 alloy to 620°C in the first experiment. Radioscopy was then replaced by tomography. Acquiring tomograms and diffraction data at 2 Hz allows even more details of foam evolution to be captured, for example, bubble size distribution. In a third experiment, 4 Hz tomography yields dynamic insights into fast phenomena in evolving metal foam.

8.
J Appl Crystallogr ; 51(Pt 3): 732-745, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29896059

RESUMO

The main focus of the presented work was the investigation of structure and residual stress gradients in the near-surface region of materials studied by X-ray diffraction. The multireflection method was used to measure depth-dependent stress variation in near-surface layers of a Ti sample (grade 2) subjected to different mechanical treatments. First, the multireflection grazing incidence diffraction method was applied on a classical diffractometer with Cu Kα radiation. The applicability of the method was then extended by using a white synchrotron beam during an energy dispersive (ED) diffraction experiment. An advantage of this method was the possibility of using not only more than one reflection but also different wavelengths of radiation. This approach was successfully applied to analysis of data obtained in the ED experiment. There was good agreement between the measurements performed using synchrotron radiation and those with Cu Kα radiation on the classical diffractometer. A great advantage of high-energy synchrotron radiation was the possibility to measure stresses as well as the a0 parameter and c0/a0 ratio for much larger depths in comparison with laboratory X-rays.

9.
ACS Appl Mater Interfaces ; 9(44): 38428-38435, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29039197

RESUMO

Hybrid perovskites have already shown a huge success as an absorber in solar cells, resulting in the skyrocketing rise in the power conversion efficiency to more than η = 22%. Recently, it has been established that the crystal quality is one of the most important parameters to obtain devices with high efficiencies. However, the influence of the crystal quality on the material properties is not fully understood. Here, the influence of the morphology on electronic properties of CH3NH3PbI3 thin films is investigated. Postannealing was used to vary the average grain size continuously from ≈150 to ≈1000 nm. Secondary grain growth is thermally activated with an activation energy of Ea = 0.16 eV. The increase in the grain size leads to an enhancement of the photoluminescence, indicating an improvement in the material quality. According to surface photovoltage measurements, the charge-carrier transport length exhibits a linear increase with increasing grain size. The charge-carrier diffusion length is limited by grain boundaries. Moreover, an improved morphology leads to a drastic increase in power conversion efficiency of the devices.

10.
Materials (Basel) ; 10(4)2017 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-28772706

RESUMO

Ti-6Al-4V bridges were additively fabricated by selective laser melting (SLM) under different scanning speed conditions, to compare the effect of process energy density on the residual stress state. Subsurface lattice strain characterization was conducted by means of synchrotron diffraction in energy dispersive mode. High tensile strain gradients were found at the frontal surface for samples in an as-built condition. The geometry of the samples promotes increasing strains towards the pillar of the bridges. We observed that the higher the laser energy density during fabrication, the lower the lattice strains. A relief of lattice strains takes place after heat treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...