Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Radiat Oncol ; 9(1): 101336, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38260219

RESUMO

Purpose: The purpose of this work was to investigate the use of a segmentation approach that could potentially improve the speed and reproducibility of contouring during magnetic resonance-guided adaptive radiation therapy. Methods and Materials: The segmentation algorithm was based on a hybrid deep neural network and graph optimization approach that also allows rapid user intervention (Deep layered optimal graph image segmentation of multiple objects and surfaces [LOGISMOS] + just enough interaction [JEI]). A total of 115 magnetic resonance-data sets were used for training and quantitative assessment. Expert segmentations were used as the independent standard for the prostate, seminal vesicles, bladder, rectum, and femoral heads for all 115 data sets. In addition, 3 independent radiation oncologists contoured the prostate, seminal vesicles, and rectum for a subset of patients such that the interobserver variability could be quantified. Consensus contours were then generated from these independent contours using a simultaneous truth and performance level estimation approach, and the deviation of Deep LOGISMOS + JEI contours to the consensus contours was evaluated and compared with the interobserver variability. Results: The absolute accuracy of Deep LOGISMOS + JEI generated contours was evaluated using median absolute surface-to-surface distance which ranged from a minimum of 0.20 mm for the bladder to a maximum of 0.93 mm for the prostate compared with the independent standard across all data sets. The median relative surface-to-surface distance was less than 0.17 mm for all organs, indicating that the Deep LOGISMOS + JEI algorithm did not exhibit a systematic under- or oversegmentation. Interobserver variability testing yielded a mean absolute surface-to-surface distance of 0.93, 1.04, and 0.81 mm for the prostate, seminal vesicles, and rectum, respectively. In comparison, the deviation of Deep LOGISMOS + JEI from consensus simultaneous truth and performance level estimation contours was 0.57, 0.64, and 0.55 mm for the same organs. On average, the Deep LOGISMOS algorithm took less than 26 seconds for contour segmentation. Conclusions: Deep LOGISMOS + JEI segmentation efficiently generated clinically acceptable prostate and normal tissue contours, potentially limiting the need for time intensive manual contouring with each fraction.

2.
Biomed Phys Eng Express ; 9(6)2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37832529

RESUMO

Objective.To integrate a Dynamic Collimation System (DCS) into a pencil beam scanning (PBS) proton therapy system and validate its dosimetric impact.Approach.Uncollimated and collimated treatment fields were developed for clinically relevant targets using an in-house treatment plan optimizer and an experimentally validated Monte Carlo model of the DCS and IBA dedicated nozzle (DN) system. The dose reduction induced by the DCS was quantified by calculating the mean dose in 10- and 30-mm two-dimensional rinds surrounding the target. A select number of plans were then used to experimentally validate the mechanical integration of the DCS and beam scanning controller system through measurements with the MatriXX-PT ionization chamber array and EBT3 film. Absolute doses were verified at the central axis at various depths using the IBA MatriXX-PT and PPC05 ionization chamber.Main results.Simulations demonstrated a maximum mean dose reduction of 12% for the 10 mm rind region and 45% for the 30 mm rind region when utilizing the DCS. Excellent agreement was observed between Monte Carlo simulations, EBT3 film, and MatriXX-PT measurements, with gamma pass rates exceeding 94.9% for all tested plans at the 3%/2 mm criterion. Absolute central axis doses showed an average verification difference of 1.4% between Monte Carlo and MatriXX-PT/PPC05 measurements.Significance.We have successfully dosimetrically validated the delivery of dynamically collimated proton therapy for clinically relevant delivery patterns and dose distributions with the DCS. Monte Carlo simulations were employed to assess dose reductions and treatment planning considerations associated with the DCS.


Assuntos
Terapia com Prótons , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Imagens de Fantasmas , Radiometria
3.
Biomed Phys Eng Express ; 9(4)2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37267924

RESUMO

Objective. Proton therapy conformity has improved over the years by evolving from passive scattering to spot scanning delivery technologies with smaller proton beam spot sizes. Ancillary collimation devices, such the Dynamic Collimation System (DCS), further improves high dose conformity by sharpening the lateral penumbra. However, as spot sizes are reduced, collimator positional errors play a significant impact on the dose distributions and hence accurate collimator to radiation field alignment is critical.Approach. The purpose of this work was to develop a system to align and verify coincidence between the center of the DCS and the proton beam central axis. The Central Axis Alignment Device (CAAD) is composed of a camera and scintillating screen-based beam characterization system. Within a light-tight box, a 12.3-megapixel camera monitors a P43/Gadox scintillating screen via a 45° first-surface mirror. When a collimator trimmer of the DCS is placed in the uncalibrated center of the field, the proton radiation beam continuously scans a 7×7 cm2square field across the scintillator and collimator trimmer while a 7 s exposure is acquired. From the relative positioning of the trimmer to the radiation field, the true center of the radiation field can be calculated.Main results.The CAAD can calculate the offset between the proton beam radiation central axis and the DCS central axis within 0.054 mm accuracy and 0.075 mm reproducibility.Significance.Using the CAAD, the DCS is now able to be aligned accurately to the proton radiation beam central axis and no longer relies on an x-ray source in the gantry head which is only validated to within 1.0 mm of the proton beam.


Assuntos
Terapia com Prótons , Prótons , Reprodutibilidade dos Testes , Imagens de Fantasmas
4.
Phys Med Biol ; 68(5)2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36706460

RESUMO

Objective. Pencil beam scanning (PBS) proton therapy target dose conformity can be improved with energy layer-specific collimation. One such collimator is the dynamic collimation system (DCS), which consists of four nickel trimmer blades that intercept the scanning beam as it approaches the lateral extent of the target. While the dosimetric benefits of the DCS have been demonstrated through computational treatment planning studies, there has yet to be experimental verification of these benefits for composite multi-energy layer fields. The objective of this work is to dosimetrically characterize and experimentally validate the delivery of dynamically collimated proton therapy with the DCS equipped to a clinical PBS system.Approach. Optimized single field, uniform dose treatment plans for 3 × 3 × 3 cm3target volumes were generated using Monte Carlo dose calculations with depths ranging from 5 to 15 cm, trimmer-to-surface distances ranging from 5 to 18.15 cm, with and without a 4 cm thick polyethylene range shifter. Treatment plans were then delivered to a water phantom using a prototype DCS and an IBA dedicated nozzle system and measured with a Zebra multilayer ionization chamber, a MatriXX PT ionization chamber array, and Gafchromic™ EBT3 film.Main results. For measurements made within the SOBPs, average 2D gamma pass rates exceeded 98.5% for the MatriXX PT and 96.5% for film at the 2%/2 mm criterion across all measured uncollimated and collimated plans, respectively. For verification of the penumbra width reduction with collimation, film agreed with Monte Carlo with differences within 0.3 mm on average compared to 0.9 mm for the MatriXX PT.Significance. We have experimentally verified the delivery of DCS-collimated fields using a clinical PBS system and commonly available dosimeters and have also identified potential weaknesses for dosimeters subject to steep dose gradients.


Assuntos
Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador , Planejamento da Radioterapia Assistida por Computador/métodos , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Imagens de Fantasmas , Método de Monte Carlo
5.
J Med Device ; 16(2): 021013, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35284033

RESUMO

Radiation therapy is integral to cancer treatments for more than half of patients. Pencil beam scanning (PBS) proton therapy is the latest radiation therapy technology that uses a beam of protons that are magnetically steered and delivered to the tumor. One of the limiting factors of PBS accuracy is the beam cross-sectional size, similar to how a painter is only as accurate as the size of their brush allows. To address this, collimators can be used to shape the beam along the tumor edge to minimize the dose spread outside of the tumor. Under development is a dynamic collimation system (DCS) that uses two pairs of nickel trimmers that collimate the beam at the tumor periphery, limiting dose from spilling into healthy tissue. Herein, we establish the dosimetric and mechanical acceptance criteria for the DCS based on a functioning prototype and Monte Carlo methods, characterize the mechanical accuracy of the prototype, and validate that the acceptance criteria are met. From Monte Carlo simulations, we found that the trimmers must be positioned within ±0.5 mm and ±1.0 deg for the dose distributions to pass our gamma analysis. We characterized the trimmer positioners at jerk values up to 400 m/s3 and validated their accuracy to 50 µm. We measured and validated the rotational trimmer accuracy to ±0.5 deg with a FARO® ScanArm. Lastly, we calculated time penalties associated with the DCS and found that the additional time required to treat one field using the DCS varied from 25-52 s.

6.
Med Phys ; 49(4): 2684-2698, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35120278

RESUMO

PURPOSE: The radiobiological benefits afforded by spatially fractionated (GRID) radiation therapy pairs well with the dosimetric advantages of proton therapy. Inspired by the emergence of energy-layer specific collimators in pencil beam scanning (PBS), this work investigates how the spot spacing and collimation can be optimized to maximize the therapeutic gains of a GRID treatment while demonstrating the integration of a dynamic collimation system (DCS) within a commercial beamline to deliver GRID treatments and experimentally benchmark Monte Carlo calculation methods. METHODS: GRID profiles were experimentally benchmarked using a clinical DCS prototype that was mounted to the nozzle of the IBA-dedicated nozzle system. Integral depth dose (IDD) curves and lateral profiles were measured for uncollimated and GRID-collimated beamlets. A library of collimated GRID dose distributions were simulated by placing beamlets within a specified uniform grid and weighting the beamlets to achieve a volume-averaged tumor cell survival equivalent to an open field delivery. The healthy tissue sparing afforded by the GRID distribution was then estimated across a range of spot spacings and collimation widths, which were later optimized based on the radiosensitivity of the tumor cell line and the nominal spot size of the PBS system. This was accomplished by using validated models of the IBA universal and dedicated nozzles. RESULTS: Excellent agreement was observed between the measured and simulated profiles. The IDDs matched above 98.7% when analyzed using a 1%/1-mm gamma criterion with some minor deviation observed near the Bragg peak for higher beamlet energies. Lateral profile distributions predicted using Monte Carlo methods agreed well with the measured profiles; a gamma passing rate of 95% or higher was observed for all in-depth profiles examined using a 3%/2-mm criteria. Additional collimation was shown to improve PBS GRID treatments by sharpening the lateral penumbra of the beamlets but creates a trade-off between enhancing the valley-to-peak ratio of the GRID delivery and the dose-volume effect. The optimal collimation width and spot spacing changed as a function of the tumor cell radiosensitivity, dose, and spot size. In general, a spot spacing below 2.0 cm with a collimation less than 1.0 cm provided a superior dose distribution among the specific cases studied. CONCLUSIONS: The ability to customize a GRID dose distribution using different collimation sizes and spot spacings is a useful advantage, especially to maximize the overall therapeutic benefit. In this regard, the capabilities of the DCS, and perhaps alternative dynamic collimators, can be used to enhance GRID treatments. Physical dose models calculated using Monte Carlo methods were experimentally benchmarked in water and were found to accurately predict the respective dose distributions of uncollimated and DCS-collimated GRID profiles.


Assuntos
Terapia com Prótons , Método de Monte Carlo , Terapia com Prótons/métodos , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
7.
Int J Part Ther ; 8(1): 73-83, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285937

RESUMO

PURPOSE: The development of collimating technologies has become a recent focus in pencil beam scanning (PBS) proton therapy to improve the target conformity and healthy tissue sparing through field-specific or energy-layer-specific collimation. Given the growing popularity of collimators for low-energy treatments, the purpose of this work was to summarize the recent literature that has focused on the efficacy of collimators for PBS and highlight the development of clinical and preclinical collimators. MATERIALS AND METHODS: The collimators presented in this work were organized into 3 categories: per-field apertures, multileaf collimators (MLCs), and sliding-bar collimators. For each case, the system design and planning methodologies are summarized and intercompared from their existing literature. Energy-specific collimation is still a new paradigm in PBS and the 2 specific collimators tailored toward PBS are presented including the dynamic collimation system (DCS) and the Mevion Adaptive Aperture. RESULTS: Collimation during PBS can improve the target conformity and associated healthy tissue and critical structure avoidance. Between energy-specific collimators and static apertures, static apertures have the poorest dose conformity owing to collimating only the largest projection of a target in the beam's eye view but still provide an improvement over uncollimated treatments. While an external collimator increases secondary neutron production, the benefit of collimating the primary beam appears to outweigh the risk. The greatest benefit has been observed for low- energy treatment sites. CONCLUSION: The consensus from current literature supports the use of external collimators in PBS under certain conditions, namely low-energy treatments or where the nominal spot size is large. While many recent studies paint a supportive picture, it is also important to understand the limitations of collimation in PBS that are specific to each collimator type. The emergence and paradigm of energy-specific collimation holds many promises for PBS proton therapy.

8.
Med Phys ; 48(6): 3172-3185, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33740253

RESUMO

PURPOSE: The aim of this work was to develop and experimentally validate a Dynamic Collimation Monte Carlo (DCMC) simulation package specifically designed for the simulation of collimators in pencil beam scanning proton therapy (PBS-PT). The DCMC package was developed using the TOPAS Monte Carlo platform and consists of a generalized PBS source model and collimator component extensions. METHODS: A divergent point-source model of the IBA dedicated nozzle (DN) at the Miami Cancer Institute (MCI) was created and validated against on-axis commissioning measurements taken at MCI. The beamline optics were mathematically incorporated into the source to model beamlet deflections in the X and Y directions at the respective magnet planes. Off-axis measurements taken at multiple planes in air were used to validate both the off-axis spot size and divergence of the source model. The DCS trimmers were modeled and incorporated as TOPAS geometry extensions that linearly translate and rotate about the bending magnets. To validate the collimator model, a series of integral depth dose (IDD) and lateral profile measurements were acquired at MCI and used to benchmark the DCMC performance for modeling both pristine and range shifted beamlets. The water equivalent thickness (WET) of the range shifter was determined by quantifying the shift in the depth of the 80% dose point distal to the Bragg peak between the range shifted and pristine uncollimated beams. RESULTS: A source model of the IBA DN system was successfully commissioned against on- and off-axis IDD and lateral profile measurements performed at MCI. The divergence of the source model was matched through an optimization of the source-to-axis distance and comparison against in-air spot profiles. The DCS model was then benchmarked against collimated IDD and in-air and in-phantom lateral profile measurements. Gamma analysis was used to evaluate the agreement between measured and simulated lateral profiles and IDDs with 1%/1 mm criteria and a 1% dose threshold. For the pristine collimated beams, the average 1%/1 mm gamma pass rates across all collimator configurations investigated were 99.8% for IDDs and 97.6% and 95.2% for in-air and in-phantom lateral profiles. All range shifted collimated IDDs passed at 100% while in-air and in-phantom lateral profiles had average pass rates of 99.1% and 99.8%, respectively. The measured and simulated WET of the polyethylene range shifter was determined to be 40.9 and 41.0 mm, respectively. CONCLUSIONS: We have developed a TOPAS-based Monte Carlo package for modeling collimators in PBS-PT. This package was then commissioned to model the IBA DN system and DCS located at MCI using both uncollimated and collimated measurements. Validation results demonstrate that the DCMC package can be used to accurately model other aspects of a DCS implementation via simulation.


Assuntos
Terapia com Prótons , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
9.
PLoS One ; 15(10): e0238704, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33035214

RESUMO

The aim of this work was to use TOPAS Monte Carlo simulations to model the effect of magnetic fields on dose distributions in brachytherapy lung treatments, under ideal and clinical conditions. Idealistic studies were modeled consisting of either a monoenergetic electron source of 432 keV, or a polyenergetic electron source using the spectrum of secondary electrons produced by 192Ir gamma-ray irradiation. The electron source was positioned in the center of a homogeneous, lung tissue phantom (ρ = 0.26 g/cm3). Conversely, the clinical study was simulated using the VariSource VS2000 192Ir source in a patient with a lung tumor. Three contoured volumes were considered: the tumor, the planning tumor volume (PTV), and the lung. In all studies, dose distributions were calculated in the presence or absence of a constant magnetic field of 3T. Also, TG-43 parameters were calculated for the VariSource and compared with published data from EGS-brachy (EGSnrc) and PENELOPE. The magnetic field affected the dose distributions in the idealistic studies. For the monoenergetic and poly-energetic studies, the radial distance of the 10% iso-dose line was reduced in the presence of the magnetic field by 64.9% and 24.6%, respectively. For the clinical study, the magnetic field caused differences of 10% on average in the patient dose distributions. Nevertheless, differences in dose-volume histograms were below 2%. Finally, for TG-43 parameters, the dose-rate constant from TOPAS differed by 0.09% ± 0.33% and 0.18% ± 0.33% with respect to EGS-brachy and PENELOPE, respectively. The geometry and anisotropy functions differed within 1.2% ± 1.1%, and within 0.0% ± 0.3%, respectively. The Lorentz forces inside a 3T magnetic resonance machine during 192Ir brachytherapy treatment of the lung are not large enough to affect the tumor dose distributions significantly, as expected. Nevertheless, large local differences were found in the lung tissue. Applications of this effect are therefore limited by the fact that meaningful differences appeared only in regions containing air, which is not abundant inside the human.


Assuntos
Braquiterapia/métodos , Neoplasias Pulmonares/radioterapia , Pulmão/efeitos da radiação , Campos Magnéticos , Braquiterapia/estatística & dados numéricos , Simulação por Computador , Relação Dose-Resposta à Radiação , Elétrons , Humanos , Radioisótopos de Irídio/administração & dosagem , Radioisótopos de Irídio/farmacocinética , Radioisótopos de Irídio/uso terapêutico , Imageamento por Ressonância Magnética , Método de Monte Carlo , Imagens de Fantasmas , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/uso terapêutico , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Distribuição Tecidual
10.
Med Phys ; 47(7): 2725-2734, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32170750

RESUMO

PURPOSE: When designing a collimation system for pencil beam spot scanning proton therapy, a decision must be made whether or not to rotate, or focus, the collimator to match beamlet deflection as a function of off-axis distance. If the collimator is not focused, the beamlet shape and fluence will vary as a function of off-axis distance due to partial transmission through the collimator. In this work, we quantify the magnitude of these effects and propose a focused dynamic collimation system (DCS) for use in proton therapy spot scanning. METHODS: This study was done in silico using a model of the Miami Cancer Institute's (MCI) IBA Proteus Plus system created in Geant4-based TOPAS. The DCS utilizes rectangular nickel trimmers mounted on rotating sliders that move in synchrony with the pencil beam to provide focused collimation at the edge of the target. Using a simplified setup of the DCS, simulations were performed at various off-axis locations corresponding to beam deflection angles ranging from 0° to 2.5°. At each off-axis location, focused (trimmer rotated) and unfocused (trimmer not rotated) simulations were performed. In all simulations, a 4 cm water equivalent thickness range shifter was placed upstream of the collimator, and a voxelized water phantom that scored dose was placed downstream, each with 4 cm airgaps. RESULTS: Increasing the beam deflection angle for an unfocused trimmer caused the collimated edge of the beamlet profile to shift 0.08-0.61 mm from the baseline 0° simulation. There was also an increase in low-dose regions on the collimated edge ranging from 14.6% to 192.4%. Lastly, the maximum dose, D max , was 0-5% higher for the unfocused simulations. With a focused trimmer design, the profile shift and dose increases were all eliminated. CONCLUSIONS: We have shown that focusing a collimator in spot scanning proton therapy reduces dose at the collimated edge compared to conventional, unfocused collimation devices and presented a simple, mechanical design for achieving focusing for a range of source-to-collimator distances.


Assuntos
Terapia com Prótons , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA