Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5188, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057727

RESUMO

Humankind relies on specialized metabolites for medicines, flavors, fragrances, and numerous other valuable biomaterials. However, the chemical space occupied by specialized metabolites, and, thus, their application potential, is limited because their biosynthesis is based on only a handful of building blocks. Engineering organisms to synthesize alternative building blocks will bypass this limitation and enable the sustainable production of molecules with non-canonical chemical structures, expanding the possible applications. Herein, we focus on isoprenoids and combine synthetic biology with protein engineering to construct yeast cells that synthesize 10 non-canonical isoprenoid building blocks with 16 carbon atoms. We identify suitable terpene synthases to convert these building blocks into C16 scaffolds and a cytochrome P450 to decorate the terpene scaffolds and produce different oxygenated compounds. Thus, we reconstruct the modular structure of terpene biosynthesis on 16-carbon backbones, synthesizing 28 different non-canonical terpenes, some of which have interesting odorant properties.


Assuntos
Carbono , Terpenos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Engenharia de Proteínas , Biologia Sintética , Terpenos/metabolismo
2.
Molecules ; 25(7)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32225050

RESUMO

From the organic extracts of five bacterial strains isolated from marine sediments collected in the East Mediterranean Sea, three new (15, 16, 31) and twenty-nine previously reported (1-14, 17-30, 32) metabolites bearing the 2,5-diketopiperazine skeleton were isolated. The structures of the chlorinated compounds 15, 16, and 31 were elucidated by extensive analysis of their spectroscopic data (NMR, MS, UV, IR). Compounds 15 and 16 were evaluated for their antifungal activity against Candida albicans and Aspergillus niger but were proven inactive. The relevant literature is supplemented with complete NMR assignments and revisions for the 29 previously reported compounds.


Assuntos
Organismos Aquáticos , Bactérias/química , Sedimentos Geológicos/microbiologia , Succinimidas/química , Bactérias/isolamento & purificação , Bactérias/metabolismo , Halogenação , Estrutura Molecular , Análise Espectral , Succinimidas/metabolismo
3.
Int J Biol Macromol ; 118(Pt A): 69-75, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29906535

RESUMO

Ulvan, a marine sulfated polysaccharide isolated from green algae, has been recently recognized as a natural biopolymer of biomedical interest. A series of lysozyme/ulvan complexes prepared under various charge ratios at physiological pH were studied. The resulting complexes were examined with light scattering techniques in order to characterize the size, the distribution and the ζ-potential of the nanocarriers, which were found to depend on the charge ratio employed. Increased complexation efficiency of lysozyme was observed for certain charge ratios, while ATR-FTIR data suggested that the protein structure after complexation was retained. Bacterial growth studies showed that lysozyme once complexed with ulvan not only retains its antibacterial activity against the Gram positive strain Staphylococcus aureus, but actually exhibits increased levels of activity. In this model study, the results highlight the potential of ulvan as a promising nanocarrier for positively charged bioactive molecules.


Assuntos
Sistemas de Liberação de Medicamentos , Muramidase/química , Nanocompostos/química , Polissacarídeos/química , Clorófitas/química , Humanos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Muramidase/farmacologia , Polieletrólitos/química , Polieletrólitos/farmacologia , Polissacarídeos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Sulfatos/química
4.
Proc Natl Acad Sci U S A ; 113(13): 3681-6, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26976595

RESUMO

Synthetic biology approaches achieving the reconstruction of specific plant natural product biosynthetic pathways in dedicated microbial "chassis" have provided access to important industrial compounds (e.g., artemisinin, resveratrol, vanillin). However, the potential of such production systems to facilitate elucidation of plant biosynthetic pathways has been underexplored. Here we report on the application of a modular terpene production platform in the characterization of the biosynthetic pathway leading to the potent antioxidant carnosic acid and related diterpenes in Salvia pomifera and Rosmarinus officinalis.Four cytochrome P450 enzymes are identified (CYP76AH24, CYP71BE52, CYP76AK6, and CYP76AK8), the combined activities of which account for all of the oxidation events leading to the biosynthesis of the major diterpenes produced in these plants. This approach develops yeast as an efficient tool to harness the biotechnological potential of the numerous sequencing datasets that are increasingly becoming available through transcriptomic or genomic studies.


Assuntos
Abietanos/biossíntese , Abietanos/química , Antioxidantes/química , Antioxidantes/metabolismo , Vias Biossintéticas , Biotecnologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Engenharia Metabólica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rosmarinus/genética , Rosmarinus/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Salvia/genética , Salvia/metabolismo , Biologia Sintética/métodos
5.
Microb Cell Fact ; 15: 46, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26920948

RESUMO

BACKGROUND: Several plant diterpenes have important biological properties. Among them, forskolin is a complex labdane-type diterpene whose biological activity stems from its ability to activate adenylyl cyclase and to elevate intracellular cAMP levels. As such, it is used in the control of blood pressure, in the protection from congestive heart failure, and in weight-loss supplements. Chemical synthesis of forskolin is challenging, and production of forskolin in engineered microbes could provide a sustainable source. To this end, we set out to establish a platform for the production of forskolin and related epoxy-labdanes in yeast. RESULTS: Since the forskolin biosynthetic pathway has only been partially elucidated, and enzymes involved in terpene biosynthesis frequently exhibit relaxed substrate specificity, we explored the possibility of reconstructing missing steps of this pathway employing surrogate enzymes. Using CYP76AH24, a Salvia pomifera cytochrome P450 responsible for the oxidation of C-12 and C-11 of the abietane skeleton en route to carnosic acid, we were able to produce the forskolin precursor 11ß-hydroxy-manoyl oxide in yeast. To improve 11ß-hydroxy-manoyl oxide production, we undertook a chassis engineering effort involving the combination of three heterozygous yeast gene deletions (mct1/MCT1, whi2/WHI2, gdh1/GDH1) and obtained a 9.5-fold increase in 11ß-hydroxy-manoyl oxide titers, reaching 21.2 mg L(-1). CONCLUSIONS: In this study, we identify a surrogate enzyme for the specific and efficient hydroxylation of manoyl oxide at position C-11ß and establish a platform that will facilitate the synthesis of a broad range of tricyclic (8,13)-epoxy-labdanes in yeast. This platform forms a basis for the heterologous production of forskolin and will facilitate the elucidation of subsequent steps of forskolin biosynthesis. In addition, this study highlights the usefulness of using surrogate enzymes for the production of intermediates of complex biosynthetic pathways. The combination of heterozygous deletions and the improved yeast strain reported here will provide a useful tool for the production of numerous other isoprenoids.


Assuntos
Colforsina/metabolismo , Diterpenos/metabolismo , Saccharomyces cerevisiae/enzimologia , Abietanos/biossíntese , Abietanos/química , Alquil e Aril Transferases/metabolismo , Vias Biossintéticas , Colforsina/química , Diterpenos/química , Cinética , Ácido Mevalônico/química , Ácido Mevalônico/metabolismo , Oxirredução , Especificidade por Substrato , Terpenos/química , Terpenos/metabolismo
6.
Metab Eng ; 27: 65-75, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25446975

RESUMO

Terpenes have numerous applications, ranging from pharmaceuticals to fragrances and biofuels. With increasing interest in producing terpenes sustainably and economically, there has been significant progress in recent years in developing methods for their production in microorganisms. In Saccharomyces cerevisiae, production of the 20-carbon diterpenes has so far proven to be significantly less efficient than production of their 15-carbon sesquiterpene counterparts. In this report, we identify the modular structure of geranylgeranyl diphosphate synthesis in yeast to be a major limitation in diterpene yields, and we engineer the yeast farnesyl diphosphate synthase Erg20p to produce geranylgeranyl diphosphate. Using a combination of protein and genetic engineering, we achieve significant improvements in the production of sclareol and several other isoprenoids, including cis-abienol, abietadiene and ß-carotene. We also report the development of yeast strains carrying the engineered Erg20p, which support efficient isoprenoid production and can be used as a dedicated chassis for diterpene production or biosynthetic pathway elucidation. The design developed here can be applied to the production of any GGPP-derived isoprenoid and is compatible with other yeast terpene production platforms.


Assuntos
Diterpenos/metabolismo , Geraniltranstransferase/biossíntese , Engenharia Metabólica , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/enzimologia , Geraniltranstransferase/genética , Fosfatos de Poli-Isoprenil/biossíntese , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Metab Eng ; 28: 91-103, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25498547

RESUMO

Terpenes are a large class of natural products, many of which are used in cosmetics, pharmaceuticals, or biofuels. However, terpene's industrial application is frequently hindered by limited availability of natural sources or low yields of chemical synthesis. In this report, we developed a modular platform based on standardized and exchangeable parts to reproduce and potentially expand the diversity of terpene structures in Saccharomyces cerevisiae. By combining different module-specific parts, we exploited the substrate promiscuity of class I diterpene synthases to produce an array of labdane-type scaffolds. These were subsequently modified by a scaffold decoration module consisting of a mutant library of a promiscuous cytochrome P450 to afford a range of hydroxylated diterpenes. Further P450 protein engineering yielded dedicated and efficient catalysts for specific products. Terpenes produced include precursors of pharmacologically important compounds, molecules that are difficult to obtain from natural sources, or new natural products. The approach described here provides a platform on which additional gene mining, combinatorial biosynthesis, and protein engineering efforts can be integrated to sustainably explore the terpene chemical space.


Assuntos
Diterpenos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilação/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Mar Biotechnol (NY) ; 12(1): 52-61, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19468792

RESUMO

The purification of the chloroform extract from the brown invasive macroalga Sargassum muticum, through a series of chromatographic separations, yielded 12 fractions that were tested against strains of bacteria, microalgae, and fungi involved in marine biofilm formation. The chemical composition of four (a, c, g, and k) out of the six fractions that exhibited anti-microfouling activity was investigated. Fraction a contained saturated and unsaturated linear hydrocarbons (C12-C27). Arachidonic acid was identified as the major metabolite in fraction c whereas fraction g contained mainly palmitic, linolenic, and palmitoleic acids. Fraction k was submitted to further purification yielding the fraction kAcaF1e that was composed of galactoglycerolipids, active against the growth of two of the four bacterial strains (Shewanella putrefaciens and Polaribacter irgensii) and all tested fungi. These promising results, in particular the isolation and the activity of galactoglycerolipids, attest the potential of the huge biomass of S. muticum as a source of new environmentally friendly antifouling compounds.


Assuntos
Biofilmes/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Lipídeos/administração & dosagem , Lipídeos/química , Sargassum/metabolismo , Antibacterianos/administração & dosagem , Antibacterianos/química , Antifúngicos/administração & dosagem , Antifúngicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...