Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1304: 342535, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637036

RESUMO

The implementation of ion mobility spectrometry (IMS) in liquid chromatography-high-resolution mass spectrometry (LC-HRMS) workflows has become a valuable tool for improving compound annotation in metabolomics analyses by increasing peak capacity and by adding a new molecular descriptor, the collision cross section (CCS). Although some studies reported high repeatability and reproducibility of CCS determination and only few studies reported good interplatform agreement for small molecules, standardized protocols are still missing due to the lack of reference CCS values and reference materials. We present a comparison of CCS values of approximatively one hundred lipid species either commercially available or extracted from human plasma. We used three different commercial ion mobility technologies from different laboratories, drift tube IMS (DTIMS), travelling wave IMS (TWIMS) and trapped IMS (TIMS), to evaluate both instrument repeatability and interlaboratory reproducibility. We showed that CCS discrepancies of 0.3% (average) could occur depending on the data processing software tools. Moreover, eleven CCS calibrants were evaluated yielding mean RSD below 2% for eight calibrants, ESI Low concentration tuning mix (Tune Mix) showing the lowest RSD (< 0.5%) in both ion modes. Tune Mix calibrated CCS from the three different IMS instruments proved to be well correlated and highly reproducible (R2 > 0.995 and mean RSD ≤ 1%). More than 90% of the lipid CCS had deviations of less than 1%, demonstrating high comparability between techniques, and the possibility to use the CCS as molecular descriptor. We highlighted the need of standardized procedures for calibration, data acquisition, and data processing. This work demonstrates that using harmonized analytical conditions are required for interplatform reproducibility for CCS determination of human plasma lipids.


Assuntos
Lipídeos , Metabolômica , Humanos , Reprodutibilidade dos Testes
2.
J Am Soc Mass Spectrom ; 35(4): 696-704, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38430122

RESUMO

Collision cross section (CCS) values determined in ion mobility-mass spectrometry (IM-MS) are increasingly employed as additional descriptors in metabolomics studies. CCS values must therefore be reproducible and the causes of deviations must be carefully known and controlled. Here, we analyzed lipid standards by trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) to evaluate the effects of solvent and flow rate in flow injection analysis (FIA), as well as electrospray source parameters including nebulizer gas pressure, drying gas flow rate, and temperature, on the ion mobility and CCS values. The stability of ion mobility experiments was studied over 10 h, which established the need for a delay-time of 20 min to stabilize source parameters (mostly pressure and temperature). Modifications of electrospray source parameters induced shifts of ion mobility peaks and even the occurrence of an additional peak in the ion mobility spectra. This behavior could be essentially explained by ion-solvent cluster formation. Changes in source parameters were also found to impact CCS value measurements, resulting in deviations up to 0.8%. However, internal calibration with the Tune Mix calibrant reduced the CCS deviations to 0.1%. Thus, optimization of source parameters is essential to achieve a good desolvation of lipid ions and avoid misinterpretation of peaks in ion mobility spectra due to solvent effects. This work highlights the importance of internal calibration to ensure interoperable CCS values, usable in metabolomics annotation.

3.
Anal Chim Acta ; 1226: 340236, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36068052

RESUMO

Collision cross sections (CCS) have been described as relevant molecular descriptors in metabolomics and lipidomics analyses for ascertaining compound identity. Ion mobility spectrometry (IMS) allows to determine CCS with different techniques, such as drift tube ion mobility spectrometry (DTIMS), traveling wave ion mobility spectrometry (TWIMS) or trapped ion mobility spectrometry (TIMS). In contrast with DTIMS where CCS can be obtained directly with measured drift times and mathematical relationship, TWIMS and TIMS techniques require an additional step of calibration to obtain CCS values. However, literature reports significantly disparate CCS values depending on the calibrant used (often more than 10%), as no consensus has been reached to define a universal CCS reference standard or harmonized calibration procedure. Therefore, publicly available CCS databases cannot be regarded as readily interoperable and exchangeable. Here, we performed a comprehensive evaluation of 11 distinct CCS calibrants in a traveling wave ion mobility spectrometry-mass spectrometry (TWIMS-MS) instrument. We showed that, using lipids from plasma as model compounds, CCS determination drastically fluctuates from one calibrant to the other with up to 25% differences, which precludes direct CCS comparison. Using the large panel of calibration curves generated, we showed that any CCS value can be efficiently re-calibrated relatively to the calibration curve made with the widely used Tune Mix solution whatever the calibration procedure originally used. The re-calibrated CCS values for each calibrant constitute a database which allows to correct any deviation on lipid CCS values whatever the calibrant originally used. Resulting corrected CCS values from plasma lipids were thus efficiently matched to those previously reported in the literature (with deviations<2%). Therefore, this work shows that unique and comparable CCS values can be obtained upon re-calibration relatively to Tune Mix CCS values, while also paving the way for the establishment of a universal CCS database of various metabolite or lipid classes.


Assuntos
Espectrometria de Mobilidade Iônica , Metabolômica , Calibragem , Espectrometria de Mobilidade Iônica/métodos , Lipídeos , Espectrometria de Massas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...