Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(8): 1853-1873.e15, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38574728

RESUMO

This study has followed a birth cohort for over 20 years to find factors associated with neurodevelopmental disorder (ND) diagnosis. Detailed, early-life longitudinal questionnaires captured infection and antibiotic events, stress, prenatal factors, family history, and more. Biomarkers including cord serum metabolome and lipidome, human leukocyte antigen (HLA) genotype, infant microbiota, and stool metabolome were assessed. Among the 16,440 Swedish children followed across time, 1,197 developed an ND. Significant associations emerged for future ND diagnosis in general and for specific ND subtypes, spanning intellectual disability, speech disorder, attention-deficit/hyperactivity disorder, and autism. This investigation revealed microbiome connections to future diagnosis as well as early emerging mood and gastrointestinal problems. The findings suggest links to immunodysregulation and metabolism, compounded by stress, early-life infection, and antibiotics. The convergence of infant biomarkers and risk factors in this prospective, longitudinal study on a large-scale population establishes a foundation for early-life prediction and intervention in neurodevelopment.


Assuntos
Biomarcadores , Microbioma Gastrointestinal , Transtornos do Neurodesenvolvimento , Criança , Feminino , Humanos , Lactente , Gravidez , Transtorno do Espectro Autista/microbiologia , Estudos Longitudinais , Estudos Prospectivos , Fezes/microbiologia , Transtornos do Humor/microbiologia
2.
Front Microbiol ; 14: 1201064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547696

RESUMO

Despite the advent of third-generation sequencing technologies, modern bacterial ecology studies still use Illumina to sequence small (~400 bp) hypervariable regions of the 16S rRNA SSU for phylogenetic classification. By sequencing a larger region of the rRNA gene operons, the limitations and biases of sequencing small portions can be removed, allowing for more accurate classification with deeper taxonomic resolution. With Nanopore sequencing now providing raw simplex reads with quality scores above Q20 using the kit 12 chemistry, the ease, cost, and portability of Nanopore play a leading role in performing differential bacterial abundance analysis. Sequencing the near-entire rrn operon of bacteria and archaea enables the use of the universally conserved operon holding evolutionary polymorphisms for taxonomic resolution. Here, a reproducible and validated pipeline was developed, RRN-operon Enabled Species-level Classification Using EMU (RESCUE), to facilitate the sequencing of bacterial rrn operons and to support import into phyloseq. Benchmarking RESCUE showed that fully processed reads are now parallel or exceed the quality of Sanger, with median quality scores of approximately Q20+, using the R10.4 and Guppy SUP basecalling. The pipeline was validated through two complex mock samples, the use of multiple sample types, with actual Illumina data, and across four databases. RESCUE sequencing is shown to drastically improve classification to the species level for most taxa and resolves erroneous taxa caused by using short reads such as Illumina.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...