Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779970

RESUMO

Droplet assay platforms have emerged as a significant methodology, providing distinct advantages such as sample compartmentalization, high throughput, and minimal analyte consumption. However, inherent complexities, especially in multiplexed detection, remain a challenge. We demonstrate a novel strategy to fabricate a plasmonic droplet assay platform (PDAP) for multiplexed analyte detection, enabling surface-enhanced Raman spectroscopy (SERS). PDAP efficiently splits a microliter droplet into submicroliter to nanoliter droplets under gravity-driven flow by wettability contrast between two distinct regions. The desired hydrophobicity and adhesive contrast between the silicone oil-grafted nonadhesive hydrophilic zone with gold nanoparticles is attained through (3-aminopropyl) triethoxysilane (APTES) functionalization of gold nanoparticles (AuNPs) using a scotch-tape mask. The wettability contrast surface facilitates the splitting of aqueous droplets with various surface tensions (ranging from 39.08 to 72 mN/m) into ultralow volumes of nanoliters. The developed PDAP was used for the multiplexed detection of Rhodamine 6G (Rh6G) and Crystal Violet (CV) dyes. The limit of detection for 120 nL droplet using PDAP was found to be 134 pM and 10.1 nM for Rh6G and CV, respectively. These results align with those from previously reported platforms, highlighting the comparable sensitivity of the developed PDAP. We have also demonstrated the competence of PDAP by testing adulterant spiked milk and obtained very good sensitivity. Thus, PDAP has the potential to be used for the multiplexed screening of food adulterants.

2.
Lab Chip ; 24(8): 2327-2334, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563256

RESUMO

The eyes provide rich physiological information and offer diagnostic potential as a sensing site, and probing tear constituents via the wearable contact lens could be explored for healthcare monitoring. Herein, we propose a novel adhesive contrast contact lens platform that can split tear film by natural means of tear secretion and blinking. The adhesive contrast is realized by selective grafting of a lubricant onto a polydimethylsiloxane (PDMS)-based contact lens, leading to high pinning zones on a non-adhesive background. The difference in contact angle hysteresis facilitates the liquid splitting. Further, the method offers control over the droplet volume by controlling the zone dimension. The adhesive contrast contact lens is coupled with fluorescent spectroscopic as well as colorimetric techniques to realize its potential as a diagnostic platform. The adhesive contrast contact lens is exploited to detect the level of lactoferrin in tear by sensitizing split droplets with Tb3+ ions. The adhesive contrast contact lens integrated with a fluorescence spectrometer was able to detect the lactoferrin level up to a concentration of 0.25 mg mL-1. Additionally, a colorimetric detection based on the fluorescence of the lactoferrin-terbium complex is demonstrated for the measurement of lactoferrin, with a limit of detection in the physiological range up to 0.5 mg mL-1.


Assuntos
Lentes de Contato Hidrofílicas , Lactoferrina/análise , Olho , Lágrimas/química , Piscadela
3.
Materials (Basel) ; 17(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38541577

RESUMO

MXenes are two-dimensional transition metal carbides, nitrides, and carbonitrides that have become important materials in nanotechnology because of their remarkable mechanical, electrical, and thermal characteristics. This review emphasizes how crucial MXene conjugates are for several biomedical applications, especially in the field of cancer. These two-dimensional (2D) nanoconjugates with photothermal, chemotherapeutic, and photodynamic activities have demonstrated promise for highly effective and noninvasive anticancer therapy. MXene conjugates, with their distinctive optical capabilities, have been employed for bioimaging and biosensing, and their excellent light-to-heat conversion efficiency makes them perfect biocompatible and notably proficient nanoscale agents for photothermal applications. The synthesis and characterization of MXenes provide a framework for an in-depth understanding of various fabrication techniques and their importance in the customized formation of MXene conjugates. The following sections explore MXene-based conjugates for nanotheranostics and demonstrate their enormous potential for biomedical applications. Nanoconjugates, such as polymers, metals, graphene, hydrogels, biomimetics, quantum dots, and radio conjugates, exhibit unique properties that can be used for various therapeutic and diagnostic applications in the field of cancer nanotheranostics. An additional layer of understanding into the safety concerns of MXene nanoconjugates is provided by detailing their toxicity viewpoints. Furthermore, the review concludes by addressing the opportunities and challenges in the clinical translation of MXene-based nanoconjugates, emphasizing their potential in real-world medical practices.

4.
Curr Eye Res ; 49(3): 260-269, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38078692

RESUMO

PURPOSE: The study showcased the application of the lab-assembled HPLC-LED-IF system to analyze proteins in tear fluid samples collected from individuals diagnosed with primary open-angle glaucoma (POAG). METHODS: Clinical application of the said technique was evaluated by recording chromatograms of tear fluid samples from control and POAG subjects and by analyzing the protein profile using multivariate analysis. The data analysis methods involved are principal component analysis (PCA), Match/No-Match, and artificial neural network (ANN) based binary classification for disease diagnosis. RESULTS: Mahalanobis distance and spectral residual values calculated using a standard calibration set of clinically confirmed POAG samples for the Match/No-Match test gave 86.9% sensitivity and 81.8% specificity. ANN with leaving one out procedure has given 87.1% sensitivity and 81.8% specificity. CONCLUSION: The results of the study revealed that the utilization of a 278 nm LED excitation in the HPLC system offers good sensitivity for detecting proteins at low concentrations allowing to obtain reliable protein profiles for the diagnosis of POAG.


Assuntos
Glaucoma de Ângulo Aberto , Humanos , Glaucoma de Ângulo Aberto/diagnóstico , Cromatografia Líquida de Alta Pressão , Projetos de Pesquisa , Análise Multivariada , Redes Neurais de Computação
6.
Heliyon ; 9(6): e17457, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37408894

RESUMO

In recent years, the application of lasers for modifying the surface topography of dental biomaterials has received increased attention. This review paper aims to provide an overview of the current status on the utilization of lasers as a potential tool for surface modification of dental biomaterials such as implants, ceramics, and other materials used for restorative purposes. A literature search was done for articles related to the use of lasers for surface modification of dental biomaterials in English language published between October 2000 and March 2023 in Scopus, Pubmed and web of science, and relevant articles were reviewed. Lasers have been mainly used for surface modification of implant materials (71%), especially titanium and its alloys, to promote osseointegration. In recent years, laser texturing has also emerged as a promising technique to reduce bacterial adhesion on titanium implant surfaces. Currently, lasers are being widely used for surface modifications to improve osseointegration and reduce peri-implant inflammation of ceramic implants and to enhance the retention of ceramic restorations to the tooth. The studies considered in this review seem to suggest laser texturing to be more proficient than the conventional methods of surface modification. Lasers can alter the surface characteristics of dental biomaterials by creating innovative surface patterns without significantly affecting their bulk properties. With advances in laser technology and availability of newer wavelengths and modes, laser as a tool for surface modification of dental biomaterials is a promising field, with excellent potential for future research.

7.
RSC Adv ; 13(32): 22559-22568, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37501778

RESUMO

Tear fluid contains organic and inorganic constituents, variations in their relative concentrations could provide valuable information and can be useful for the detection of several ophthalmological diseases. This report describes the application of the lab-assembled light-emitting diode (LED)-based high-performance liquid chromatography system for protein profiling of tear fluids to diagnose dry eye disease. Principal Component Analysis (PCA), match/no-match, and Artificial Neural Network (ANN) based binary classification of protein profile data were performed for disease diagnosis. Results from the match/no-match test of the protein profile data showed 94.4% sensitivity and 87.8% specificity. ANN with the leaving one out procedure has given 91.6% sensitivity and 93.9% specificity.

8.
Anal Chim Acta ; 1273: 341530, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423663

RESUMO

BACKGROUND: The thermally coupled energy states that contribute to the upconversion luminescence of rare earth element-doped nanoparticles have been the subject of intense research due to their potential nanoscale temperature probing. However, the inherent low quantum efficiency of these particles often limits their practical applications, and currently, surface passivation and incorporation of plasmonic particles are being explored to improve the inherent quantum efficiency of the particle. However, the role of these surface passivating layers and the attached plasmonic particles in the temperature sensitivity of upconverting nanoparticles while probing the intercellular temperature has not been investigated thus far, particularly at the single nanoparticle level. RESULTS: The analysis of the study on the thermal sensitivity of oleate-free UCNP, UCNP@SiO2, and UCNP@SiO2@Au particles is carried out at a single particle level in a physiologically relevant temperature range (299 K-319 K) by optically trapping the particle. The thermal relative sensitivity of the as-prepared upconversion nanoparticle (UCNP) is found to be greater than that of UCNP@SiO2 and UCNP@SiO2@Au particles in an aqueous medium. An optically trapped single luminescence particle inside the cell is used to monitor the temperature inside the cell by measuring the luminescence from the thermally coupled states. The absolute sensitivity of optically trapped particles inside the biological cell increases with temperature, with a greater impact on the bare UCNP, which exhibits higher values for thermal sensitivity than UCNP@SiO2 and UCNP@SiO2@Au. The thermal sensitivity of the trapped particle inside the biological cell at 317 K indicates the thermal sensitivity of UCNP > UCNP@SiO2@Au > UCNP@SiO2 particles. SIGNIFICANCE AND NOVELTY: Compared to bulk sample-based temperature probing, the present study demonstrates temperature measurement at the single particle level by optically trapping the particle and further explores the role of the passivating silica shell and the incorporation of plasmonic particles on thermal sensitivity. Furthermore, thermal sensitivity measurements inside a biological cell at the single particle level are investigated and illustrated that thermal sensitivity at a single particle is sensitive to the measuring environment.

9.
Biophys Rev ; 15(2): 199-221, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37113565

RESUMO

Raman spectroscopy offers the potential for fingerprinting biological molecules at ultra-low concentration and therefore has potential for the detection of viruses. Here we review various Raman techniques employed for the investigation of viruses. Different Raman techniques are discussed including conventional Raman spectroscopy, surface-enhanced Raman spectroscopy, Raman tweezer, tip-enhanced Raman Spectroscopy, and coherent anti-Stokes Raman scattering. Surface-enhanced Raman scattering can play an essential role in viral detection by multiplexing nanotechnology, microfluidics, and machine learning for ensuring spectral reproducibility and efficient workflow in sample processing and detection. The application of these techniques to diagnose the SARS-CoV-2 virus is also reviewed. Supplementary Information: The online version contains supplementary material available at 10.1007/s12551-023-01059-4.

10.
Langmuir ; 39(5): 1987-1996, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36696539

RESUMO

Wettability-tailored tracks are emerging as an efficient approach to collecting and transporting underwater air bubbles as well as water from the mist. However, tailoring the surface wettability by modifying the surface structural features via physiochemical methods to create superhydrophilic-superhydrophobic contrast tracks suffers from long-term durability issues, while the emerging liquid-infused slippery surface has inherent design engineering limitations and issues from infused oil depletion. Herein, we demonstrate that by selective silicone oil grafting onto the glass substrate, it is possible to create a wettability contrast of ∼ 43°. Further, we illustrate the application of such tracks for underwater air bubble capturing and transportation in an aqueous medium with surface tension ranging from 72 to 43.5 mN/m. In addition, the potential of these nonadhesive and adhesive tracks for water collection from the mist is shown and the critical effect of the track dimension and intertrack spacing on the water harvesting rate is investigated in detail. The study illustrates that the nonadhesive nature of the oil-grafted region enables the easy transport of underwater air bubbles as well as water from the flow medium and thus offers an easy and facile approach to creating substrates for underwater air bubble collection and water harvesting.

11.
Nanotechnology ; 34(17)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36706452

RESUMO

The quenching in luminescence emission of an optically trapped ligand-free hydrophilic NaYF4:Yb, Er upconversion nanoparticle (UCNP) as a function of rose Bengal dye molecule is investigated here. The removal of oleate capping of the as-prepared UCNPs was achieved via acid treatment and characterized via FTIR and Raman spectroscopic techniques. Further, the capping removed hydrophilic single UCNP is optically trapped and the emission studies were carried out as a function of excitation laser power. Compared to the studies using the bulk solution, the single UCNP luminescence spectrum exhibited additional spectral lines. The excitation laser power-dependent studies using the bulk solution yield a slope value between 1 and 2 for Blue, Green 1, Green 2, and Red emission and thus indicate that upconversion is a two-photon upconversion process. On the other hand, in the case of laser power-dependent studies on an optically trapped single-particle study, Blue and Green 1 yield a slope value of less than 1 whereas Green 2 and Red emission gave a slope value between 1 and 2. The energy transfer studies between an optically trapped ligand-free single UCNP and the rose Bengal dye show a concentration-dependent quenching in the emission of Green emissions and illustrate the potential of developing sensor platforms.

12.
Analyst ; 148(3): 539-545, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36562341

RESUMO

The selective ultra-sensitive detection of a very low concentration of analyte in a liquid environment using surface-enhanced Raman spectroscopy (SERS) is a challenging task owing to the poor reproducibility of the Raman signals arising from the nonstationary nature of the substrate. However, plasmonic metal particle-incorporated microparticles can be effectively 3-D arrested in a liquid environment that can serve as a stable SERS substrate by employing an optical trapping force. Herein, we demonstrate a 3-D optically trapped Au-attached SiO2 microparticle as an efficient SERS substrate that can detect 512 pM for Rhodamine6G and 6.8 pM for crystal violet. Further, the substrate allows the simultaneous detection of multiple analytes. By utilizing the Raman signal from Rhodamine 6G as the probe beam, the selective detection of Hg2+ ions as low as 100 pM is demonstrated.

13.
Lab Chip ; 22(21): 4110-4117, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36128986

RESUMO

Droplet splitting by exploiting tailored surface wettability is emerging as an important pathway to creating ultralow volumes of samples that can have applications in bioassays, tissue engineering, protein chips, and material synthesis. Reduction of droplet volumes enables the encapsulation of single biological cells which allows high throughput screening. In this work, we demonstrate a facile fabrication approach to create a non-adhesive contrast quartz substrate that allows droplet splitting under gravitational force and its utilization to trap single biological cells for Raman spectroscopic studies. The non-adhesive contrast surface is created by low-power continuous-wave laser-assisted removal of the region of interest from a biocompatible non-adhesive silicone oil grafted quartz substrate. For a given laser spot dimension, the hydrophilic zone dimension is controlled via irradiation with varying laser powers. The fabricated non-adhesive contrast surface can split a microliter droplet into pico- and sub-picolitre daughter droplets. By using the substrate, the trapping of a single polystyrene bead is demonstrated and the recording of Raman spectra is carried out. Additionally, the Raman spectra of two biological cells, yeast cells and human mononuclear cells (MNCs), from a daughter droplet are recorded independently and from a mixture of the solutions. This single-cell Raman analysis could find applications in cell identification and type discrimination, biochemical imaging, metabolic and functional characterization, and clinical and toxicity studies.


Assuntos
Poliestirenos , Quartzo , Humanos , Óleos de Silicone , Análise Espectral Raman/métodos , Molhabilidade , Análise de Célula Única/métodos
14.
Chemosphere ; 306: 135528, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35798149

RESUMO

In this study, hydrophilic activated carbon has been prepared and used to synthesize innovative activated carbon/polysulfone mixed matrix membranes (MMMs). These membranes were investigated in terms of membrane morphology, hydrophilicity, antifouling ability, and metal ions rejection. The activated carbon (AC) was prepared from a simple chemical activation method using Rhizophora mucronata propagules, which are rich in aerenchyma cells and possess a high surface area. The hydrophilicity of the MMMs is enhanced by the incorporation of activated carbon, which is confirmed by the measurement of equilibrium water contact angle, water uptake and pure water flux. The optimized concentration of 0.625 wt% activated carbon (A2) incorporated mixed matrix membrane exhibits better rejection efficiencies of 98 ± 0.5%, 99 ± 0.5%, 92 ± 2%, and 44 ± 1% for Pb+2, Cd+2, Hg+2, and F- with the permeate flux of 28.27, 31.88, 33.21, 43.82 L/m2/h, respectively. The fabricated mixed matrix membranes demonstrated an excellent flux recovery ratio and reversible fouling, when filtrating a mixed feed solution containing 200 ppm BSA, 10 ppm Pb+2 and 10 ppm Cd+2. The optimized A2 membrane showed excellent long-term stability up to 120 h without compromising in permeate flux and rejection efficiency. Finally, a numerical investigation using a usual transport model has shown that dielectric exclusion was the most probable mechanism that can physically explain experimental trends.


Assuntos
Rhizophoraceae , Águas Residuárias , Cádmio , Carvão Vegetal , Descontaminação , Chumbo , Membranas Artificiais , Água
15.
Nanomaterials (Basel) ; 12(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35159789

RESUMO

The fabrication of a thick oxide layer onto an aluminum surface via anodization has been a subject of intense research activity for more than a century, largely due to protective and decorative applications. The capability to create well-defined pores via a cost-effective electrochemical oxidation technique onto the surface has made a major renaissance in the field, as the porous surfaces exhibit remarkably different properties compared to a bulk oxide layer. Amongst the various nanoporous structures being investigated, nanoporous anodic alumina (NAA) with well-organized and highly ordered hexagonal honeycomb-like pores has emerged as the most popular nanomaterial due to its wide range of applications, ranging from corrosion resistance to bacterial repelling surfaces. As compared to conventional nanostructure fabrication, the electrochemical anodization route of NAA with well-controlled pore parameters offers an economical route for fabricating nanoscale materials. The review comprehensively reflects the progress made in the fabrication route of NAA to obtain the material with desired pore properties, with a special emphasis on self-organization and pore growth kinetics. Detailed accounts of the various conditions that can play an important role in pore growth kinetics and pore parameters are presented. Further, recent developments in the field of controlling optical properties of NAA are discussed. A critical outlook on the future trends of the fabrication of NAA and its optical properties on the emerging nanomaterials, sensors, and devices are also outlined.

16.
Methods Appl Fluoresc ; 10(2)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35213848

RESUMO

Anisotropic rare earth ion (RE3+) doped fluoride upconversion particles are emerging as potential candidate in diverse areas, ranging from biomedical imaging to photonics. Here, we develop a facile strategy to synthesize NaYF4: Yb, Gd, Er, and NaYF4: Yb, Gd, Tm upconversion nanorods via microwave synthesis route by controlling the synthesis time and compared the optical properties similar nanorods prepared via solvothermal technique. With the increase in synthesis time, the phase of the particle found to change from mixed phase to purely hexagonal and morphology of the particles change mixed phase of spherical and rod-shaped particles to completely nanorods for a synthesis time of 60 min. Further, the intrinsically hydrophobic particles changed to hydrophilic by removal of oleic capping via acid treatment and the amine functionalized silica coating. The upconversion luminescence as well as laser power dependent emission properties of the surface modified particles elucidate that surface modification route influence the upconversion luminescence as well as solvent dependent emission properties. Moreover, the laser power dependent studies elucidate that the upconversion process in a multi-photon process.


Assuntos
Luminescência , Nanotubos , Fluoretos , Micro-Ondas , Nanotubos/química , Dióxido de Silício
17.
Chemosphere ; 287(Pt 2): 132085, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34492412

RESUMO

Due to the ever-increasing industrialization, it is critical to protect the environment and conserve water resources by developing efficient wastewater treatment methods. Traditional methods that simultaneously remove heavy metal ions and complex dyes are too expensive and tedious to commercialize. This work demonstrates the versatility, effectiveness, and potential of a biomass-derived adsorbent (from a mangrove fruit of Rhizophora mucronata) synthesized using a simple route for rapid adsorption of complex dyes and heavy metals with an efficiency of near unity. The cartridges were prepared using activated carbon that removes both dye molecules and heavy metal ions simultaneously from wastewater, corroborating its applicability/feasibility to treat wastewater. Owing to the high surface area (1061.5 m2g-1) and the pore volume (0.5325 cm3g-1), the adsorbent showed >99% removal efficiency in just 12 min of exposure to wastewater. The cartridge exhibits >90% removal efficiency of both dyes and heavy metals from its mixed feed solution. The Langmuir and Freundlich models successfully explained the adsorption kinetics. These developed cartridges are versatile, rapid, efficient, and promising candidates for environmental remediation.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Biomassa , Carvão Vegetal , Corantes , Concentração de Íons de Hidrogênio , Cinética , Águas Residuárias , Poluentes Químicos da Água/análise
18.
Curr Pharm Des ; 28(9): 690-710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34036909

RESUMO

The advances in the synthesis of nanoparticles with engineered properties are reported to have profound applications in oncological disease detection via optical and multimodal imaging and therapy. Among the various nanoparticle-assisted imaging techniques, engineered fluorescent nanoparticles show great promise from high contrast images and localized therapeutic applications. Of all the fluorescent nanoparticles available, the gold nanoparticles, carbon dots, and upconversion nanoparticles are emerging recently as the most promising candidates for diagnosis, treatment, and cancer monitoring. This review addresses the recent progress in engineering the properties of these emerging nanoparticles and their application for cancer diagnosis and therapy. In addition, the potential of these particles for subcellular imaging is also reviewed here.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Carbono , Diagnóstico por Imagem , Ouro , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia
19.
Results Chem ; : 100210, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34642620

RESUMO

Research activities are in full swing globally to translate the use of saliva as a non-invasive and highly potential specimen for clinical diagnostics, particularly for COVID-19 detection. Being comprised of a pool of biomarkers also enriched with ACE-2 receptors, saliva can provide vital information regarding the state of the human body. Advancements in biophotonics tools for saliva investigation may offer promise for developing rapid, highly objective, optical modalities for COVID- 19 detection. This article presents concept/design study, which propose the use of Raman/laser induced fluorescence spectroscopic device that have the potential for viral detection via saliva from a safer distance. Noticeable changes of biomarkers present in saliva in response to viral infection can reflect the pathological state, thus can altogether affect the Raman spectral pattern. Monitoring these spectral patterns of saliva, which are further enhanced by using cost effective and reproducible Surface Enhanced Raman Spectroscopy substrates can be a viable option for sensitive and non-invasive viral detection. The spectral information acquired from the optical device can be processed using various multivariate statistical analytical tools, which ultimately facilitate effective viral detection in few minutes. This method doesn't demand the necessity of qualified professionals and sample processing with reagents unlike in RT-PCR test. The proposed optical device can be further modified into a portable form, which can be easily transported for field applications. The stand-off observation, contactless and highly non-invasive technique can be of paramount importance in the current context, where the safer screening of a large population for viral infection by maintaining social distances is a necessity. The proposed stand-off spectroscopic technique can also address the major concern of nosocomial viral transmission amongst healthcare workers during sample collection in a pandemic scenario.

20.
Int J Biol Macromol ; 189: 100-113, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34411613

RESUMO

In the present work, lactoferrin (Lf) based nanoparticle incorporated self-supporting gel encapsulating a flavonoid, quercetin (Q), was developed. The complex formation between Lf and Q was assessed using molecular docking and dynamics simulation that lactoferrin and quercetin showed strong interaction and binding supporting hydrophobic interaction. The microscopic, spectroscopic, and x-ray techniques were used to characterize the gel extensively. In vitro drug release was studied to understand the release pattern of quercetin from the protein gel. The viscosity of the gel and its rheological characteristics were determined using a Brookfield viscometer. Ex vivo skin permeation studies using vertical diffusion cells were carried out to understand its skin permeation properties. The gel showed strong anti-oxidant activity using the DPPH scavenging assay. The enhanced effect of the Lf-Q complex on antioxidant enzyme activity (superoxide dismutase, catalase, and malondialdehyde), was supported by molecular dynamics, surface hydrophobicity, and in vitro studies. To investigate the effect of the gel on angiogenesis, the chorioallantoic membrane assay was performed and its compatibility with erythrocytes was also assessed. Suitability for topical administration was assessed using skin irritation studies performed on Sprague Dawley rats. The overall results suggest that the developed NiPG is suitable for cutaneous localization of quercetin with enhanced antioxidant activity.


Assuntos
Géis/química , Lactoferrina/química , Simulação de Dinâmica Molecular , Nanopartículas/química , Estresse Oxidativo , Polifenóis/química , Células 3T3 , Animais , Antioxidantes/farmacologia , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Galinhas , Membrana Corioalantoide/efeitos dos fármacos , Liberação Controlada de Fármacos , Eritrócitos/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ligantes , Masculino , Camundongos , Simulação de Acoplamento Molecular , Quercetina/química , Ratos Sprague-Dawley , Pele/efeitos dos fármacos , Testes de Irritação da Pele , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Viscosidade , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...