Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 16(12): 3628-45, 2010 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-20209531

RESUMO

A detailed spectroscopic and quantum chemical analysis is presented to elucidate the electronic structures of the octahedral complexes [Fe(Et(2)dtc)(3-n)(mnt)(n)](n-) (1-4, n=3, 2, 1, 0) and their one-electron oxidized analogues [Fe(Et(2)dtc)(3-n)(mnt)(n)]((n-1)-) (1(ox)-4(ox)); (mnt)(2-) represents maleonitriledithiolate(2-) and (Et(2)dtc)(1-) is the diethyldithiocarbamato(1-) ligand. By using X-ray crystallography, Mössbauer spectroscopy, and Fe and S K-edge X-ray absorption spectroscopy (XAS) it is convincingly shown that, in contrast to our previous studies on [Fe(cyclam)(mnt)](1+) (cyclam=1,4,8,11-tetraazacyclotetradecane), the oxidation of 1-4 is metal-centered yielding the genuine Fe(IV) complexes 1(ox)-4(ox). For the latter complexes, a spin ground state of S=1 has been established by magnetic susceptibility measurements, which indicates a low-spin d(4) configuration. DFT calculations at the B3LYP level support this electronic structure and exclude the presence of a ligand pi radical coordinated to an intermediate-spin ferric ion. Mössbauer parameters and XAS spectra have been calculated to calibrate our computational results against the experiment. Finally, a simple ligand-field approach is presented to correlate the structural features obtained from X-ray crystallography (100 K) with the spectroscopic data.


Assuntos
Complexos de Coordenação/química , Ferro/química , Ligantes , Cristalografia por Raios X , Técnicas Eletroquímicas , Espectroscopia de Ressonância de Spin Eletrônica , Conformação Molecular , Oxirredução , Espectroscopia de Mossbauer , Compostos de Sulfidrila/química , Espectroscopia por Absorção de Raios X
2.
J Am Chem Soc ; 130(46): 15288-303, 2008 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-18942830

RESUMO

This paper investigates the interaction between five-coordinate ferric hemes with bound axial imidazole ligands and nitric oxide (NO). The corresponding model complex, [Fe(TPP)(MI)(NO)](BF4) (MI = 1-methylimidazole), is studied using vibrational spectroscopy coupled to normal coordinate analysis and density functional theory (DFT) calculations. In particular, nuclear resonance vibrational spectroscopy is used to identify the Fe-N(O) stretching vibration. The results reveal the usual Fe(II)-NO(+) ground state for this complex, which is characterized by strong Fe-NO and N-O bonds, with Fe-NO and N-O force constants of 3.92 and 15.18 mdyn/A, respectively. This is related to two strong pi back-bonds between Fe(II) and NO(+). The alternative ground state, low-spin Fe(III)-NO(radical) (S = 0), is then investigated. DFT calculations show that this state exists as a stable minimum at a surprisingly low energy of only approximately 1-3 kcal/mol above the Fe(II)-NO(+) ground state. In addition, the Fe(II)-NO(+) potential energy surface (PES) crosses the low-spin Fe(III)-NO(radical) energy surface at a very small elongation (only 0.05-0.1 A) of the Fe-NO bond from the equilibrium distance. This implies that ferric heme nitrosyls with the latter ground state might exist, particularly with axial thiolate (cysteinate) coordination as observed in P450-type enzymes. Importantly, the low-spin Fe(III)-NO(radical) state has very different properties than the Fe(II)-NO(+) state. Specifically, the Fe-NO and N-O bonds are distinctively weaker, showing Fe-NO and N-O force constants of only 2.26 and 13.72 mdyn/A, respectively. The PES calculations further reveal that the thermodynamic weakness of the Fe-NO bond in ferric heme nitrosyls is an intrinsic feature that relates to the properties of the high-spin Fe(III)-NO(radical) (S = 2) state that appears at low energy and is dissociative with respect to the Fe-NO bond. Altogether, release of NO from a six-coordinate ferric heme nitrosyl requires the system to pass through at least three different electronic states, a process that is remarkably complex and also unprecedented for transition-metal nitrosyls. These findings have implications not only for heme nitrosyls but also for group-8 transition-metal(III) nitrosyls in general.


Assuntos
Elétrons , Compostos Ferrosos/química , Ferro/química , Óxido Nítrico/química , Porfirinas/química , Cristalografia por Raios X , Heme/química , Modelos Moleculares , Estrutura Molecular , Espectrofotometria Infravermelho , Vibração
3.
Inorg Chem ; 47(15): 6804-24, 2008 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-18582030

RESUMO

The ligand L (2-) (H 2L = N, N'-dimethyl- N, N'-bis(3,5-di- t-butyl-2-hydroxybenzyl)-1,2-diaminoethane) has been employed for the synthesis of two mononuclear Fe (III) complexes, namely, [LFe(eta (2)-NO 3)] and [LFeCl]. L (2-) is comprised of four strongly electron-donating groups (two tert-amines and two phenolates) that increase the electron density at the coordinated ferric ions. This property should facilitate oxidation of the complexes, that is, stabilization of the oxidized species. The molecular structures in the solid state have been established by X-ray diffraction studies. [LFeCl] is five-coordinate in a square-pyramidal coordination environment with the ligand adopting a trans-conformation, while [LFe(eta (2)-NO 3)] is six-coordinate in a distorted octahedral environment with the ligand in a beta-cis conformation. The electronic structures have been studied using magnetization, EPR, Mossbauer (with and without applied field), UV-vis-NIR, and X-ray absorption spectroscopies, which demonstrate highly anisotropic covalency from the strong sigma- and pi-donating phenolates. This analysis is supported by DFT calculations on [LFeCl]. The variations of the well-understood spectroscopic data in the solid state to the spectroscopic data in solution have been used to obtain insight in the molecular structure of the two complexes in solution. While the molecular structures of the solid states are retained in solutions of nonpolar aprotic solvents, there is, however, one common molecular structure in all protic polar solvents. The analysis of the LMCT transitions and the rhombicity E/ D clearly establish that both compounds exhibit a beta-cis conformation in these protic polar solvents. These two open coordination sites, cis to each other, allow access for two potential ligands in close proximity. Electrochemical analysis establishes two reversible oxidation waves for [LFeCl] at +0.55 V and +0.93 V vs Fc (+)/Fc and one reversible oxidation wave at +0.59 V with an irreversible oxidation at +1.07 V vs Fc (+)/Fc for [LFe(eta (2)-NO 3)]. The one- and the two-electron oxidations of [LFeCl] by chronoamperometry have been followed spectroscopically. The increase of a strong band centered at 420 nm indicates the formulation of [LFeCl] (+) as a Fe (III) monophenoxyl radical complex and of [LFeCl] (2+) as a Fe (III) bisphenoxyl radical complex. These studies imply that the ligand L (2-) is capable of providing a flexible coordination geometry with two binding sites for substrates and the allocation of two oxidation equivalents on the ligand.


Assuntos
Compostos de Benzil/química , Elétrons , Etilaminas/química , Ferro/química , Compostos Organometálicos/síntese química , Absorciometria de Fóton , Cristalografia por Raios X , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Magnetismo , Compostos Organometálicos/química , Oxirredução , Fenóis/química , Teoria Quântica , Espectrofotometria Ultravioleta , Espectroscopia de Mossbauer
4.
J Am Chem Soc ; 129(43): 12989-3000, 2007 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17918832

RESUMO

High-valent Mn-oxo species have been suggested to have a catalytically important role in the water splitting reaction which occurs in the Photosystem II membrane protein. In this study, five- and six-coordinate mononuclear Mn(V) compounds were investigated by polarized X-ray absorption spectroscopy in order to understand the electronic structure and spectroscopic characteristics of high-valent Mn species. Single crystals of the Mn(V)-nitrido and Mn(V)-oxo compounds were aligned along selected molecular vectors with respect to the X-ray polarization vector using X-ray diffraction. The local electronic structure of the metal site was then studied by measuring the polarization dependence of X-ray absorption near-edge spectroscopy (XANES) pre-edge spectra (1s to 3d transition) and comparing with the results of density functional theory (DFT) calculations. The Mn(V)-nitrido compound, in which the manganese is coordinated in a tetragonally distorted octahedral environment, showed a single dominant pre-edge peak along the MnN axis that can be assigned to a strong 3d(z(2))-4p(z) mixing mechanism. In the square pyramidal Mn(V)-oxo system, on the other hand, an additional peak was observed at 1 eV below the main pre-edge peak. This component was interpreted as a 1s to 3d(xz,yz) transition with 4px,y mixing, due to the displacement of the Mn atom out of the equatorial plane. The XANES results have been correlated to DFT calculations, and the spectra have been simulated using a TD (time-dependent)-DFT approach. The relevance of these results to understanding the mechanism of the photosynthetic water oxidation is discussed.


Assuntos
Compostos de Manganês/química , Oxigênio/química , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Raios X , Cristalização , Elétrons , Modelos Moleculares , Estrutura Molecular , Compostos de Nitrogênio/química , Espectrofotometria
5.
Inorg Chem ; 46(19): 7827-39, 2007 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-17715917

RESUMO

From the reaction mixture of 3,6-di-tert-butylcatechol, H2[3,6L(cat)], [CrCl3(thf)3], and NEt3 in CH3CN in the presence of air, the neutral complex [CrIII(3,6L*(sq))3] (S = 0) (1) was isolated. Reduction of 1 with [Co(Cp)2] in CH2Cl2 yielded microcrystals of [Co(Cp)2][CrIII(3,6L*(sq))2(3,6L(cat))] (S = 1/2) (2) where (3,6L*(sq)(1-) is the pi-radical monoanionic o-semiquinonate of the catecholate dianion (3,6Lcat)(2-). Electrochemistry demonstrated that both species are members of the electron-transfer series [Cr(3,6LO,O)]z (z = 0, 1-, 2-, 3-). The corresponding tris(benzo-1,2-dithiolato)chromium complex [N(n-Bu)4][CrIII(3,5L*S,S)2(3,5LS,S)] (S = 1/2) (3) has also been isolated; (3,5LS,S)(2-) represents the closed-shell dianion 3,5-di-tert-butylbenzene-1,2-dithiolate(2-), and (3,5L*S,S)(1-) is its monoanionic pi radical. Complex 3 is a member of the electron-transfer series [Cr(3,5L(S,S))3]z (z = 0, 1-, 2-, 3-). It is shown by Cr K-edge and S K-edge X-ray absorption, UV-vis, and EPR spectroscopies, as well as X-ray crystallography, of 1 and 3 that the oxidation state of the central Cr ion in each member of both electron-transfer series remains the same (+III) and that all redox processes are ligand-based. These experimental results have been corroborated by broken symmetry density functional theoretical calculations by using the B3LYP functional.


Assuntos
Cromo/química , Modelos Químicos , Compostos Organometálicos/química , Eletroquímica , Elétrons , Ligantes , Estrutura Molecular , Compostos Organometálicos/síntese química , Oxirredução , Teoria Quântica , Análise Espectral
6.
Inorg Chem ; 46(10): 4187-96, 2007 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-17428048

RESUMO

The preparation and structural characterization of the neutral, square planar complexes [PtII(tbpy)(A)] (1), [PtII(tbpy)(B)] (2), and [PtII(PPh3)2(B)] (3) have been accomplished, where (tbpy) = 4,4'-di-tert-butylpyridine, (A)2- = 3,6-bis(trimethylsilyl)-1,2-benzenedithiolate(2-), and (B)2- = 1,2-bis(4-tert-butylphenyl)ethylene-1,2-dithiolate(2-) and (A*)1- and (B*)1- represent the corresponding monoanionic radicals. Electrochemical and chemical one-electron oxidation of 1 and 2 in CH2Cl2 solution affords the monomeric monocations [PtII(tbpy)(A*)]+ (1a) and [PtII(tbpy)(B*)]+ (2a), both of which possess an S = 1/2 ground state. The corresponding spin doublet monocationic dimers [PtII2(tbpy)2(A)(A*)]+ (1b) and [PtII2(tbpy)2(B)(B*)]+ (2b) were electrochemically generated in solution (50% oxidation) and identified by X-band EPR spectroscopy. Complete one-electron oxidation of 1 and 2 yielded the diamagnetic dimers [PtII2(tbpy)2(A*)2]2+ (1c) and [PtII2(tbpy)2(B*)2]2+ (2c) which are in equilibrium with the corresponding paramagnetic monomers 1a and 2a in solution. The crystal structure of [PtII2(tbpy)2(B*)2](PF6)2.3CH2Cl2 (2c) revealed a centrosymmetric, lateral dimer whose bridging part is a PtII2(mu2-S)2 rhomb; the metal ions possess a square based pyramidal geometry. Solid-state sulfur K-edge X-ray absorption spectra of 1, 2, 2a, 2c, and [PtII(B*)2]0 (4) have been recorded, which clearly show that a sulfur-centered radical (B*)1- is present in 2a, 2c, and 4. The absence of ligand-based radicals in 1 and 2 is also clearly established. One-electron oxidation of [Pt(PPh3)2(B)] (3) afforded only the spin doublet species [PtII(PPh3)2(B*)]+ (3a); no dimer formation was detected. Synthesis and crystal structure of square planar [PtII(B*)2]0.thf are also reported.


Assuntos
Compostos Organoplatínicos/síntese química , Fenômenos Químicos , Físico-Química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Indicadores e Reagentes , Ligantes , Modelos Moleculares , Conformação Molecular , Platina/química
7.
J Am Chem Soc ; 129(13): 3955-65, 2007 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-17352474

RESUMO

A combination of spectroscopy and density functional theory (DFT) calculations has been used to evaluate the pH effect at the CuZ site in Pseudomonas nautica (Pn) nitrous oxide reductase (N2OR) and Achromobacter cycloclastes (Ac) N2OR and its relevance to catalysis. Absorption, magnetic circular dichroism, and electron paramagnetic resonance with sulfur K-edge X-ray absorption spectra of the enzymes at high and low pH show minor changes. However, resonance Raman (rR) spectroscopy of PnN2OR at high pH shows that the 415 cm-1 Cu-S vibration (observed at low pH) shifts to higher frequency, loses intensity, and obtains a 9 cm-1 18O shift, implying significant Cu-O character, demonstrating the presence of a OH- ligand at the CuICuIV edge. From DFT calculations, protonation of either the OH- to H2O or the mu4-S2- to mu4-SH- would produce large spectral changes which are not observed. Alternatively, DFT calculations including a lysine residue at an H-bonding distance from the CuICuIV edge ligand show that the position of the OH- ligand depends on the protonation state of the lysine. This would change the coupling of the Cu-(OH) stretch with the Cu-S stretch, as observed in the rR spectrum. Thus, the observed pH effect (pKa approximately 9.2) likely reflects protonation equilibrium of the lysine residue, which would both raise E degrees and provide a proton for lowering the barrier for the N-O cleavage and for reduction of the [Cu4S(im)7OH]2+ to the fully reduced 4CuI active form for turnover.


Assuntos
Cobre/química , Reagentes de Ligações Cruzadas/química , Oxirredutases/química , Oxirredutases/metabolismo , Sulfetos/química , Simulação por Computador , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Cinética , Ligantes , Modelos Moleculares , Conformação Molecular , Vibração
8.
J Am Chem Soc ; 129(5): 1268-77, 2007 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-17263410

RESUMO

The reactions of manganese(III) porphyrin complexes with terminal oxidants, such as m-chloroperbenzoic acid, iodosylarenes, and H(2)O(2), produced high-valent manganese(V)-oxo porphyrins in the presence of base in organic solvents at room temperature. The manganese(V)-oxo porphyrins have been characterized with various spectroscopic techniques, including UV-vis, EPR, 1H and 19F NMR, resonance Raman, and X-ray absorption spectroscopy. The combined spectroscopic results indicate that the manganese(V)-oxo porphyrins are diamagnetic low-spin (S = 0) species with a longer, weaker Mn-O bond than in previously reported Mn(V)-oxo complexes of non-porphyrin ligands. This is indicative of double-bond character between the manganese(V) ion and the oxygen atom and may be attributed to the presence of a trans axial ligand. The [(Porp)Mn(V)=O](+) species are stable in the presence of base at room temperature. The stability of the intermediates is dependent on base concentration. In the absence of base, (Porp)Mn(IV)=O is generated instead of the [(Porp)Mn(V)=O](+) species. The stability of the [(Porp)Mn(V)=O](+) species also depends on the electronic nature of the porphyrin ligands: [(Porp)Mn(V)=O](+) complexes bearing electron-deficient porphyrin ligands are more stable than those bearing electron-rich porphyrins. Reactivity studies of manganese(V)-oxo porphyrins revealed that the intermediates are capable of oxygenating PPh(3) and thioanisoles, but not olefins and alkanes at room temperature. These results indicate that the oxidizing power of [(Porp)Mn(V)=O](+) is low in the presence of base. However, when the [(Porp)Mn(V)=O](+) complexes were associated with iodosylbenzene in the presence of olefins and alkanes, high yields of oxygenated products were obtained in the catalytic olefin epoxidation and alkane hydroxylation reactions. Mechanistic aspects, such as oxygen exchange between [(Porp)Mn(V)=16O](+) and H(2)(18)O, are also discussed.


Assuntos
Manganês/química , Metaloporfirinas/síntese química , Oxidantes/química , Alcanos/química , Alcenos/química , Clorobenzoatos/química , Peróxido de Hidrogênio/química , Iodobenzenos/química , Ligantes , Estrutura Molecular , Compostos Orgânicos/química , Oxirredução , Oxigênio/química , Solventes/química , Análise Espectral , Temperatura , Fatores de Tempo
9.
Inorg Chem ; 45(24): 9864-76, 2006 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-17112284

RESUMO

Sulfur K-edge X-ray absorption spectroscopy (XAS) was used to characterize the approximately 0.1% sulfur found both in native reticulated vitreous carbon (RVC) foam and in RVC oxidatively modified using 0.2 M KMnO4 in 2 M H2SO4. Sulfur valences and functional groups were assessed using K-edge XAS spectral curve-fitting and employing explicit sulfur compounds as models. For native RVC, these were episulfide (approximately 3%), thianthrene (approximately 9%), disulfide (approximately 10%), sulfenate ester (approximately 12%), benzothiophene (approximately 24%), N,N'-thiobisphthalimide (approximately 30%), alkyl sulfonate (approximately 1.2%), alkyl sulfate monoester (approximately 6%), and sulfate dianion (approximately 6%). Permanganate oxidation of RVC diminished sulfenic sulfur to approximately 9%, thianthrenic sulfur to approximately 7%, and sulfate dianion to approximately 1% but increased sulfate monoester to approximately 12%, and newly produced sulfone (approximately 2%) and sulfate diester (approximately 5%). A simple thermodynamic model was derived that allows proportionate functional group comparisons despite differing (approximately +/-15%) total sulfur contents between RVC batches. The limits of accuracy in the XAS curve-fitting analysis are discussed in terms of microenvironments and extended structures in RVC carbon that cannot be exactly modeled by small molecules. Sulfate esters cover approximately 0.15% of the RVC surface, increasing to approximately 0.51% following permanganate/sulfuric acid treatment. The detection of episulfide directly corroborates a proposed mechanism for the migration of elemental sulfur through carbon.


Assuntos
Carbono/química , Análise Espectral/métodos , Enxofre/análise , Absorção , Carbono/metabolismo , Dissulfetos/química , Compostos Heterocíclicos/química , Modelos Químicos , Oxirredução , Sulfatos/química , Enxofre/química , Compostos de Enxofre/química , Termodinâmica , Tiofenos/química , Raios X
10.
Science ; 312(5782): 1937-41, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16741074

RESUMO

The hexavalent state, considered to be the highest oxidation level accessible for iron, has previously been found only in the tetrahedral ferrate dianion, FeO4(2-). We report the photochemical synthesis of another Fe(VI) compound, an octahedrally coordinated dication bearing a terminal nitrido ligand. Mössbauer and x-ray absorption spectra, supported by density functional theory, are consistent with the octahedral structure having an FeN triple bond of 1.57 angstroms and a singlet d2(xy) ground electronic configuration. The compound is stable at 77 kelvin and yields a high-spin Fe(III) species upon warming.


Assuntos
Ferro/química , Compostos Organometálicos/química , Fenômenos Químicos , Físico-Química , Temperatura Baixa , Eletroquímica , Isomerismo , Modelos Moleculares , Estrutura Molecular , Nitrogênio/química , Oxirredução , Fotoquímica , Fotólise , Espectrofotometria Infravermelho , Espectroscopia de Mossbauer , Análise Espectral
12.
J Am Chem Soc ; 127(2): 667-74, 2005 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-15643891

RESUMO

Titanium cyclopentadienyl (Cp) complexes play important roles as homogeneous polymerization catalysts and have recently received attention as potential anticancer agents. To systematically probe the contribution of the Cp to bonding in organotitanium complexes, Ti K-edge XAS has been applied to TiCl(4) and then to the mono- and bis-Cp complexes, TiCpCl(3) and TiCp(2)Cl(2). Ti K-edge XAS is used as a direct probe of metal 3d-4p mixing and provides insight into the contribution of the Cp to bonding. These data are complimented by Cl K-edge XAS data, which provide a direct probe of the effect of the Cp on the bonding to the spectator chloride ligand. The experimental results are correlated to DFT calculations. A model for metal 3d-4p mixing is proposed, which is based on covalent interactions with the ligands and demonstrates that metal K-pre-edge intensities may be used as a measure of ligand-metal covalency in molecular Ti(IV) systems in noncentrosymmetric environments.


Assuntos
Compostos Organometálicos/química , Titânio/química , Modelos Moleculares , Espectrometria por Raios X/métodos
13.
J Am Chem Soc ; 124(21): 6180-93, 2002 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-12022853

RESUMO

The multicopper oxidases contain at least four copper atoms and catalyze the four-electron reduction of O(2) to H(2)O at a trinuclear copper cluster. An intermediate, termed native intermediate, has been trapped by a rapid freeze-quench technique from Rhus vernicifera laccase when the fully reduced form reacts with dioxygen. This intermediate had been described as an oxygen-radical bound to the trinuclear copper cluster with one Cu site reduced. XAS, however, shows that all copper atoms are oxidized in this intermediate. A combination of EXAFS, multifrequency EPR, and VTVH MCD has been used to understand how this fully oxidized trinuclear Cu cluster relates to the fully oxidized resting form of the enzyme. It is determined that in the native intermediate all copper atoms of the cluster are bridged by the product of full O(2) reduction. In contrast, the resting form has one copper atom of the cluster (the T2 Cu) magnetically isolated from the others. The native intermediate decays to the resting oxidized form with a rate that is too slow to be in the catalytic cycle. Thus, the native intermediate appears to be the catalytically relevant fully oxidized form of the enzyme, and its role in catalysis is considered.


Assuntos
Cobre/química , Oxirredutases/química , Oxigênio/química , Água/química , Sítios de Ligação , Cobre/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Lacase , Modelos Químicos , Oxirredução , Oxirredutases/metabolismo , Oxigênio/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Rhus/enzimologia , Espectrometria por Raios X , Espectrofotometria Ultravioleta , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...