Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Biofabrication ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749416

RESUMO

The hemorrhagic fever viruses (HFV) cause severe or fatal infections in humans. Named after their common symptom hemorrhage, these viruses induce significant vascular dysfunction by affecting endothelial cells, altering immunity, and disrupting the clotting system. Despite advances in treatments, such as cytokine blocking therapies, disease modifying treatment for this class of pathogen remains elusive. Improved understanding of the pathogenesis of these infections could provide new avenues to treatment. While animal models and traditional 2D cell cultures have contributed insight into the mechanisms by which these pathogens affect the vasculature, these models fall short in replicating in vivo human vascular dynamics. The emergence of microphysiological systems (MPS) offers promising avenues for modeling these complex interactions. These MPS or "organ-on-chip" models present opportunities to better mimic human vascular responses and thus aid in treatment development. In this review, we explore the impact of HFV on the vasculature by causing endothelial dysfunction, blood clotting irregularities, and immune dysregulation. We highlight how existing MPS have elucidated features of HFV pathogenesis as well as discuss existing knowledge gaps and the challenges in modeling these interactions using MPS. Understanding the intricate mechanisms of vascular dysfunction caused by HFV is crucial in developing therapies not only for these infections, but also for other vasculotropic conditions like sepsis.

2.
Biofabrication ; 16(2)2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38128127

RESUMO

Insulin is an essential regulator of blood glucose homeostasis that is produced exclusively byßcells within the pancreatic islets of healthy individuals. In those affected by diabetes, immune inflammation, damage, and destruction of isletßcells leads to insulin deficiency and hyperglycemia. Current efforts to understand the mechanisms underlyingßcell damage in diabetes rely onin vitro-cultured cadaveric islets. However, isolation of these islets involves removal of crucial matrix and vasculature that supports islets in the intact pancreas. Unsurprisingly, these islets demonstrate reduced functionality over time in standard culture conditions, thereby limiting their value for understanding native islet biology. Leveraging a novel, vascularized micro-organ (VMO) approach, we have recapitulated elements of the native pancreas by incorporating isolated human islets within a three-dimensional matrix nourished by living, perfusable blood vessels. Importantly, these islets show long-term viability and maintain robust glucose-stimulated insulin responses. Furthermore, vessel-mediated delivery of immune cells to these tissues provides a model to assess islet-immune cell interactions and subsequent islet killing-key steps in type 1 diabetes pathogenesis. Together, these results establish the islet-VMO as a novel,ex vivoplatform for studying human islet biology in both health and disease.


Assuntos
Diabetes Mellitus , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Insulina/metabolismo , Diabetes Mellitus/metabolismo , Glucose/metabolismo
3.
bioRxiv ; 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37503139

RESUMO

Assessing B cell affinity to pathogen-specific antigens prior to or following exposure could facilitate the assessment of immune status. Current standard tools to assess antigen-specific B cell responses focus on equilibrium binding of the secreted antibody in serum. These methods are costly, time-consuming, and assess antibody affinity under zero-force. Recent findings indicate that force may influence BCR-antigen binding interactions and thus immune status. Here, we designed a simple laminar flow microfluidic chamber in which the antigen (hemagglutinin of influenza A) is bound to the chamber surface to assess antigen-specific BCR binding affinity of five hemagglutinin-specific hybridomas under 65- to 650-pN force range. Our results demonstrate that both increasing shear force and bound lifetime can be used to enrich antigen-specific high affinity B cells. The affinity of the membrane-bound BCR in the flow chamber correlates well with the affinity of the matched antibodies measured in solution. These findings demonstrate that a microfluidic strategy can rapidly assess BCR-antigen binding properties and identify antigen-specific high affinity B cells. This strategy has the potential to both assess functional immune status from peripheral B cells and be a cost-effective way of identifying individual B cells as antibody sources for a range of clinical applications.

4.
Lab Chip ; 23(13): 3050-3061, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37278194

RESUMO

A feature of severe COVID-19 is the onset of an acute and intense systemic inflammatory response referred to as the "cytokine storm". The cytokine storm is characterized by high serum levels of inflammatory cytokines and the subsequent transport of inflammatory cells to damaging levels in vital organs (e.g., myocarditis). Immune trafficking and its effect on underlying tissues (e.g., myocardium) are challenging to observe at a high spatial and temporal resolution in mouse models. In this study, we created a vascularized organ-on-a-chip system to mimic cytokine storm-like conditions and tested the effectiveness of a novel multivalent selectin-targeting carbohydrate conjugate (composed of DS - dermatan sulfate and IkL - a selectin-binding peptide, termed DS-IkL) in blocking infiltration of polymorphonuclear leukocytes (PMN). Our data shows that cytokine storm-like conditions induce endothelial cells to produce additional inflammatory cytokines and facilitate infiltration of PMNs into tissue. Treatment of tissues with DS-IkL (60 µM) reduced PMN accumulation in the tissue by >50%. We then created cytokine storm-like conditions in a vascularized cardiac tissue-chip and found that PMN infiltration increases the spontaneous beating rate of the cardiac tissue, and this effect is eliminated by treatment with DS-IkL (60 µM). In summary, we demonstrate the utility of an organ-on-a-chip platform to mimic COVID-19 related cytokine storm and that blocking leukocyte infiltration with DS-IkL could be a viable strategy to mitigate associated cardiac complications.


Assuntos
COVID-19 , Neutrófilos , Camundongos , Animais , Cardiotoxicidade , Células Endoteliais , Sistemas Microfisiológicos , Citocinas
5.
Biophys J ; 122(15): 3133-3145, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37381600

RESUMO

The coordinated (dis)engagement of the membrane-bound T cell receptor (TCR)-CD3-CD4 complex from the peptide-major histocompatibility complex (pMHC) is fundamental to TCR signal transduction and T cell effector function. As such, an atomic-scale understanding would not only enhance our basic understanding of the adaptive immune response but would also accelerate the rational design of TCRs for immunotherapy. In this study, we explore the impact of the CD4 coreceptor on the TCR-pMHC (dis)engagement by constructing a molecular-level biomimetic model of the CD3-TCR-pMHC and CD4-CD3-TCR-pMHC complexes within a lipid bilayer. After allowing the system complexes to equilibrate (engage), we use steered molecular dynamics to dissociate (disengage) the pMHC. We find that 1) the CD4 confines the pMHC closer to the T cell by 1.8 nm at equilibrium; 2) CD4 confinement shifts the TCR along the MHC binding groove engaging a different set of amino acids and enhancing the TCR-pMHC bond lifetime; 3) the CD4 translocates under load increasing the interaction strength between the CD4-pMHC, CD4-TCR, and CD4-CD3; and 4) upon dissociation, the CD3-TCR complex undergoes structural oscillation and increased energetic fluctuation between the CD3-TCR and CD3-lipids. These atomic-level simulations provide mechanistic insight on how the CD4 coreceptor impacts TCR-pMHC (dis)engagement. More specifically, our results provide further support (enhanced bond lifetime) for a force-dependent kinetic proofreading model and identify an alternate set of amino acids in the TCR that dominate the TCR-pMHC interaction and could thus impact the design of TCRs for immunotherapy.


Assuntos
Biomimética , Receptores de Antígenos de Linfócitos T , Complexo CD3/química , Complexo CD3/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Complexo Principal de Histocompatibilidade , Peptídeos/química , Simulação de Dinâmica Molecular , Ligação Proteica , Aminoácidos/metabolismo
6.
J Extracell Vesicles ; 12(4): e12323, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37073802

RESUMO

Extracellular vesicles (EVs) influence a host of normal and pathophysiological processes in vivo. Compared to soluble mediators, EVs can traffic a wide range of proteins on their surface including extracellular matrix (ECM) binding proteins, and their large size (∼30-150 nm) limits diffusion. We isolated EVs from the MCF10 series-a model human cell line of breast cancer progression-and demonstrated increasing presence of laminin-binding integrins α3ß1 and α6ß1 on the EVs as the malignant potential of the MCF10 cells increased. Transport of the EVs within a microfluidic device under controlled physiological interstitial flow (0.15-0.75 µm/s) demonstrated that convection was the dominant mechanism of transport. Binding of the EVs to the ECM enhanced the spatial concentration and gradient, which was mitigated by blocking integrins α3ß1 and α6ß1. Our studies demonstrate that convection and ECM binding are the dominant mechanisms controlling EV interstitial transport and should be leveraged in nanotherapeutic design.


Assuntos
Vesículas Extracelulares , Laminina , Humanos , Laminina/metabolismo , Convecção , Integrina alfa6beta1/metabolismo , Vesículas Extracelulares/metabolismo , Integrina alfa3beta1/metabolismo , Matriz Extracelular/metabolismo
7.
Sci Rep ; 12(1): 20434, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443378

RESUMO

Endothelial cells line all major blood vessels and serve as integral regulators of many functions including vessel diameter, cellular trafficking, and transport of soluble mediators. Despite similar functions, the phenotype of endothelial cells is highly organ-specific, yet our understanding of the mechanisms leading to organ-level differentiation is incomplete. We generated 3D microvessel networks by combining a common naïve endothelial cell with six different stromal cells derived from the lung, skin, heart, bone marrow, pancreas, and pancreatic cancer. Single cell RNA-Seq analysis of the microvessel networks reveals five distinct endothelial cell populations, for which the relative proportion depends on the stromal cell population. Morphologic features of the organotypic vessel networks inversely correlate with a cluster of endothelial cells associated with protein synthesis. The organotypic stromal cells were each characterized by a unique subpopulation of cells dedicated to extracellular matrix organization and assembly. Finally, compared to cells in 2D monolayer, the endothelial cell transcriptome from the 3D in vitro heart, skin, lung, and pancreas microvessel networks are more similar to the in vivo endothelial cells from the respective organs. We conclude that stromal cells contribute to endothelial cell and microvessel network organ tropism, and create an endothelial cell phenotype that more closely resembles that present in vivo.


Assuntos
Células Endoteliais , Neoplasias Pancreáticas , Humanos , Transcriptoma , Microvasos , Células Estromais
8.
J Immunol Methods ; 511: 113381, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36341963

RESUMO

Although parallel plate flow chamber assays are widely performed, extraction of kinetic parameters is limited to specialized labs with mathematical expertise and customized video-microscopy tracking tools. The recent development of Trackmate has increased researcher accessibility to tracking particles in video-microscopy experiments; however, there is a lack of tools that analyze this tracking information. We report a software tool, compatible with Trackmate, that extracts Receptor Ligand Non-Equilibrium Kinetic (RLNEK) parameters from video-microscopy data. This software should be of particular interest to the community of researchers and scientists interrogating the target-specific binding and release of immune cells.


Assuntos
Ligantes
9.
Physiol Rep ; 10(18): e15407, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36117385

RESUMO

Atrial fibrillation (AF) is the most common arrhythmia in the United States, affecting approximately 1 in 10 adults, and its prevalence is expected to rise as the population ages. Treatment options for AF are limited; moreover, the development of new treatments is hindered by limited (1) knowledge regarding human atrial electrophysiological endpoints (e.g., conduction velocity [CV]) and (2) accurate experimental models. Here, we measured the CV and refractory period, and subsequently calculated the conduction wavelength, in vivo (four subjects with AF and four controls), and ex vivo (atrial slices from human hearts). Then, we created an in vitro model of human atrial conduction using induced pluripotent stem (iPS) cells. This model consisted of iPS-derived human atrial cardiomyocytes plated onto a micropatterned linear 1D spiral design of Matrigel. The CV (34-41 cm/s) of the in vitro model was nearly five times faster than 2D controls (7-9 cm/s) and similar to in vivo (40-64 cm/s) and ex vivo (28-51 cm/s) measurements. Our iPS-derived in vitro model recapitulates key features of in vivo atrial conduction and may be a useful methodology to enhance our understanding of AF and model patient-specific disease.


Assuntos
Fibrilação Atrial , Sistema de Condução Cardíaco , Adulto , Átrios do Coração , Frequência Cardíaca , Humanos
10.
Comput Struct Biotechnol J ; 20: 3473-3481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860406

RESUMO

The rational design of T Cell Receptors (TCRs) for immunotherapy has stagnated due to a limited understanding of the dynamic physiochemical features of the TCR that elicit an immunogenic response. The physiochemical features of the TCR-peptide major histocompatibility complex (pMHC) bond dictate bond lifetime which, in turn, correlates with immunogenicity. Here, we: i) characterize the force-dependent dissociation kinetics of the bond between a TCR and a set of pMHC ligands using Steered Molecular Dynamics (SMD); and ii) implement a machine learning algorithm to identify which physiochemical features of the TCR govern dissociation kinetics. Our results demonstrate that the total number of hydrogen bonds between the CDR2ß-MHC⍺(ß), CDR1α-Peptide, and CDR3ß-Peptide are critical features that determine bond lifetime.

11.
Comput Struct Biotechnol J ; 20: 2124-2133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832631

RESUMO

An atomic-scale mechanism of T Cell Receptor (TCR) mechanosensing of peptides in the binding groove of the peptide-major histocompatibility complex (pMHC) may inform the design of novel TCRs for immunotherapies. Using steered molecular dynamics simulations, our study demonstrates that mutations to peptides in the binding groove of the pMHC - which are known to discretely alter the T cell response to an antigen - alter the MHC conformation at equilibrium. This subsequently impacts the overall strength (duration and length) of the TCR-pMHC bond under constant load. Moreover, physiochemical features of the TCR-pMHC dynamic bond strength, such as hydrogen bonds and Lennard-Jones contacts, correlate with the immunogenic response elicited by the specific peptide in the MHC groove. Thus, formation of transient TCR-pMHC bonds is characteristic of immunogenic peptides, and steered molecular dynamics simulations can be used in the overall design strategy of TCRs for immunotherapies.

12.
Cell ; 185(14): 2523-2541.e30, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35738284

RESUMO

Stem cell research endeavors to generate specific subtypes of classically defined "cell types." Here, we generate >90% pure human artery or vein endothelial cells from pluripotent stem cells within 3-4 days. We specified artery cells by inhibiting vein-specifying signals and vice versa. These cells modeled viral infection of human vasculature by Nipah and Hendra viruses, which are extraordinarily deadly (∼57%-59% fatality rate) and require biosafety-level-4 containment. Generating pure populations of artery and vein cells highlighted that Nipah and Hendra viruses preferentially infected arteries; arteries expressed higher levels of their viral-entry receptor. Virally infected artery cells fused into syncytia containing up to 23 nuclei, which rapidly died. Despite infecting arteries and occupying ∼6%-17% of their transcriptome, Nipah and Hendra largely eluded innate immune detection, minimally eliciting interferon signaling. We thus efficiently generate artery and vein cells, introduce stem-cell-based toolkits for biosafety-level-4 virology, and explore the arterial tropism and cellular effects of Nipah and Hendra viruses.


Assuntos
Vírus Hendra , Vírus Nipah , Células-Tronco Pluripotentes , Artérias , Células Endoteliais , Vírus Hendra/genética , Humanos , Tropismo
13.
Biomaterials ; 280: 121245, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34810038

RESUMO

Bone marrow niches (endosteal and perivascular) play important roles in both normal bone marrow function and pathological processes such as cancer cell dormancy. Unraveling the mechanisms underlying these events in humans has been severely limited by models that cannot dissect dynamic events at the niche level. Utilizing microfluidic and stem cell technologies, we present a 3D in vitro model of human bone marrow that contains both the perivascular and endosteal niches, complete with dynamic, perfusable vascular networks. We demonstrate that our model can replicate in vivo bone marrow function, including maintenance and differentiation of CD34+ hematopoietic stem/progenitor cells, egress of neutrophils (CD66b+), and niche-specific responses to doxorubicin and granulocyte-colony stimulating factor. Our platform provides opportunities to accelerate current understanding of human bone marrow function and drug response with high spatial and temporal resolution.


Assuntos
Medula Óssea , Dispositivos Lab-On-A-Chip , Células da Medula Óssea , Osso e Ossos , Diferenciação Celular/fisiologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas , Humanos , Nicho de Células-Tronco
14.
Adv Drug Deliv Rev ; 175: 113798, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34015419

RESUMO

Every year, cancer claims millions of lives around the globe. Unfortunately, model systems that accurately mimic human oncology - a requirement for the development of more effective therapies for these patients - remain elusive. Tumor development is an organ-specific process that involves modification of existing tissue features, recruitment of other cell types, and eventual metastasis to distant organs. Recently, tissue engineered microfluidic devices have emerged as a powerful in vitro tool to model human physiology and pathology with organ-specificity. These organ-on-chip platforms consist of cells cultured in 3D hydrogels and offer precise control over geometry, biological components, and physiochemical properties. Here, we review progress towards organ-specific microfluidic models of the primary and metastatic tumor microenvironments. Despite the field's infancy, these tumor-on-chip models have enabled discoveries about cancer immunobiology and response to therapy. Future work should focus on the development of autologous or multi-organ systems and inclusion of the immune system.


Assuntos
Dispositivos Lab-On-A-Chip , Metástase Neoplásica/patologia , Neoplasias/patologia , Animais , Humanos , Engenharia Tecidual , Microambiente Tumoral
15.
Annu Rev Biomed Eng ; 23: 141-167, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33756087

RESUMO

Recreating human organ-level function in vitro is a rapidly evolving field that integrates tissue engineering, stem cell biology, and microfluidic technology to produce 3D organoids. A critical component of all organs is the vasculature. Herein, we discuss general strategies to create vascularized organoids, including common source materials, and survey previous work using vascularized organoids to recreate specific organ functions and simulate tumor progression. Vascularization is not only an essential component of individual organ function but also responsible for coupling the fate of all organs and their functions. While some success in coupling two or more organs together on a single platform has been demonstrated, we argue that the future of vascularized organoid technology lies in creating organoid systems complete with tissue-specific microvasculature and in coupling multiple organs through a dynamic vascular network to create systems that can respond to changing physiological conditions.


Assuntos
Dispositivos Lab-On-A-Chip , Organoides , Humanos , Microfluídica , Células-Tronco , Engenharia Tecidual
16.
Elife ; 92020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33206048

RESUMO

During mammalian gastrulation, germ layers arise and are shaped into the body plan while extraembryonic layers sustain the embryo. Human embryonic stem cells, cultured with BMP4 on extracellular matrix micro-discs, reproducibly differentiate into gastruloids, expressing markers of germ layers and extraembryonic cells in radial arrangement. Using single-cell RNA sequencing and cross-species comparisons with mouse, cynomolgus monkey gastrulae, and post-implantation human embryos, we reveal that gastruloids contain cells transcriptionally similar to epiblast, ectoderm, mesoderm, endoderm, primordial germ cells, trophectoderm, and amnion. Upon gastruloid dissociation, single cells reseeded onto micro-discs were motile and aggregated with the same but segregated from distinct cell types. Ectodermal cells segregated from endodermal and extraembryonic but mixed with mesodermal cells. Our work demonstrates that the gastruloid system models primate-specific features of embryogenesis, and that gastruloid cells exhibit evolutionarily conserved sorting behaviors. This work generates a resource for transcriptomes of human extraembryonic and embryonic germ layers differentiated in a stereotyped arrangement.


Assuntos
Padronização Corporal , Células-Tronco Embrionárias/fisiologia , Gástrula/citologia , Transcrição Gênica/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
17.
Integr Biol (Camb) ; 12(9): 221-232, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32930334

RESUMO

Tumor-infiltrating leukocytes, in particular macrophages, play an important role in tumor behavior and clinical outcome. The spectrum of macrophage subtypes ranges from antitumor 'M1'-type to protumor 'M2'-type macrophages. Tumor-associated macrophages (TAMs) typically display phenotypic features of both M1 and M2, and the population distribution is thought to be dynamic and evolves as the tumor progresses. However, our understanding of how TAMs impact the tumor microenvironment remains limited by the lack of appropriate 3D in vitro models that can capture cell-cell dynamics at high spatial and temporal resolution. Using our recently developed microphysiological 'tumor-on-a-chip' (TOC) device, we present here our findings on the impact of defined macrophage subsets on tumor behavior. The TOC device design contains three adjacent and connected chambers in which both the upper and lower chambers are loaded with tumor cells, whereas the central chamber contains a dynamic, perfused, living microvascular network. Introduction of human pancreatic or colorectal cancer cells together with M1-polarized macrophages significantly inhibited tumor growth and tumor-induced angiogenesis. Protein analysis and antibody-based neutralization studies confirmed that these effects were mediated through production of C-X-C motif chemokines (CXCL9), CXCL10 and CXCL11. By contrast, M2-macrophages mediated increased tumor cell migration into the vascularized chamber and did not inhibit tumor growth or angiogenesis. In fact, single-cell RNA sequencing showed that M2 macrophages further segregated endothelial cells into two distinct subsets, corresponding to static cells in vessels versus active cells involved in angiogenesis. The impact of M2 macrophages was mediated mostly by production of matrix metalloproteinase 7 and angiopoietin 2. In summary, our data demonstrate the utility of the TOC device to mechanistically probe biological questions in a 3D in vitro microenvironment.


Assuntos
Progressão da Doença , Dispositivos Lab-On-A-Chip , Macrófagos/citologia , Neoplasias/patologia , Motivos de Aminoácidos , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Células Endoteliais , Humanos , Técnicas In Vitro , Linfócitos do Interstício Tumoral/citologia , Ativação de Macrófagos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neovascularização Patológica/patologia , Fenótipo , RNA Citoplasmático Pequeno/metabolismo , RNA-Seq , Microambiente Tumoral , Macrófagos Associados a Tumor , Células U937
18.
Lab Chip ; 20(16): 3036-3050, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32716448

RESUMO

Hypoxia, or low oxygen (O2) tension, is a central feature of important disease processes including wound healing and cancer. Subtle temporal and spatial variations (≤1% change) in the concentration of O2 can profoundly impact gene expression and cellular functions. Sodium sulfite reacts rapidly with O2 and can be used to lower the O2 concentrations in PDMS-based tissue culture systems without exposing the cell culture to the chemical reaction. By carefully considering the mass transfer and reaction kinetics of sodium sulfite and O2, we developed a flexible theoretical framework to design an experimental microfluidic system that provides fine spatial and temporal control of O2 tension. The framework packages the dimensions, fluid flow, reaction rates, concentrations, and material properties of the fluidic lines and device into dimensionless groups that facilitate scaling and design. We validated the theoretical results by experimentally measuring O2 tension throughout the experimental system using phosphorescence lifetime imaging. We then tested the system by examining the impact of hypoxia inducible factor-1α (HIF-1α) on the proliferation and migration of MDA-MB-231 breast cancer cells. Using this system, we demonstrate that mild constant hypoxia (≤4%) induces HIF-1α mediated functional changes in the tumor cells. Furthermore, slow (>12 hours), but not rapid (<1 hour), fluctuations in O2 tension impact HIF-1α mediated proliferation and migration. Our results provide a generalized framework for fine temporal and spatial control of O2 and emphasize the need to consider mild spatial and temporal changes in O2 tension as potentially important factors in disease processes such as cancer.


Assuntos
Microfluídica , Oxigênio , Técnicas de Cultura de Células , Hipóxia Celular , Humanos , Hipóxia
19.
Lab Chip ; 20(15): 2776-2787, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32614340

RESUMO

An improved understanding of biomechanical factors that control tumor development, including angiogenesis, could explain why few of the promising treatment strategies discovered via in vitro models translate well into in vivo or clinical studies. The ability to manipulate and in real-time study the multiple independent biomechanical properties on cellular activity has been limited, primarily due to limitations in traditional in vitro platforms or the inability to manipulate such factors in vivo. We present a novel microfluidic platform that mimics the vascularized tumor microenvironment with independent control of interstitial flow and mechanical strain. The microtissue platform design isolates mechanically-stimulated angiogenesis in the tumor microenvironment, by manipulating interstitial flow to eliminate soluble factors that could drive blood vessel growth. Our studies demonstrate that enhanced mechanical strain induced by cancer-associated fibroblasts (CAFs) promotes angiogenesis in microvasculature models, even when preventing diffusion of soluble factors to the growing vasculature. Moreover, small but significant decreases in micro-strains induced by inhibited CAFs were sufficient to reduce angiogenesis. Ultimately, we believe this platform represents a significant advancement in the ability to investigate biomechanical signals while controlling for biochemical signals, with a potential to be utilized in fields beyond cancer research.


Assuntos
Neoplasias , Neovascularização Patológica , Neovascularização Fisiológica , Matriz Extracelular , Humanos , Microfluídica , Microambiente Tumoral
20.
Sci Rep ; 10(1): 3842, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123209

RESUMO

The development and physiologic role of small intestine (SI) vasculature is poorly studied. This is partly due to a lack of targetable, organ-specific markers for in vivo studies of two critical tissue components: endothelium and stroma. This challenge is exacerbated by limitations of traditional cell culture techniques, which fail to recapitulate mechanobiologic stimuli known to affect vessel development. Here, we construct and characterize a 3D in vitro microfluidic model that supports the growth of patient-derived intestinal subepithelial myofibroblasts (ISEMFs) and endothelial cells (ECs) into perfused capillary networks. We report how ISEMF and EC-derived vasculature responds to physiologic parameters such as oxygen tension, cell density, growth factors, and pharmacotherapy with an antineoplastic agent (Erlotinib). Finally, we demonstrate effects of ISEMF and EC co-culture on patient-derived human intestinal epithelial cells (HIECs), and incorporate perfused vasculature into a gut-on-a-chip (GOC) model that includes HIECs. Overall, we demonstrate that ISEMFs possess angiogenic properties as evidenced by their ability to reliably, reproducibly, and quantifiably facilitate development of perfused vasculature in a microfluidic system. We furthermore demonstrate the feasibility of including perfused vasculature, including ISEMFs, as critical components of a novel, patient-derived, GOC system with translational relevance as a platform for precision and personalized medicine research.


Assuntos
Capilares/crescimento & desenvolvimento , Técnicas de Cocultura/instrumentação , Intestino Delgado/citologia , Dispositivos Lab-On-A-Chip , Miofibroblastos/citologia , Humanos , Miofibroblastos/metabolismo , Oxigênio/metabolismo , Perfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...