Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3707, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349297

RESUMO

Few studies report the occurrence of microplastics (MP), including tire wear particles (TWP) in the marine atmosphere, and little data is available regarding their size or sources. Here we present active air sampling devices (low- and high-volume samplers) for the evaluation of composition and MP mass loads in the marine atmosphere. Air was sampled during a research cruise along the Norwegian coast up to Bear Island. Samples were analyzed with pyrolysis-gas chromatography-mass spectrometry, generating a mass-based data set for MP in the marine atmosphere. Here we show the ubiquity of MP, even in remote Arctic areas with concentrations up to 37.5 ng m-3. Cluster of polyethylene terephthalate (max. 1.5 ng m-3) were universally present. TWP (max. 35 ng m-3) and cluster of polystyrene, polypropylene, and polyurethane (max. 1.1 ng m-3) were also detected. Atmospheric transport and dispersion models, suggested the introduction of MP into the marine atmosphere equally from sea- and land-based emissions, transforming the ocean from a sink into a source for MP.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polipropilenos
2.
Sci Total Environ ; 818: 151812, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34808158

RESUMO

Microplastic (MP) appears to be omnipresent in the atmosphere, raising concerns about dispersion across environmental compartments, ecological consequences and human health risks by inhalation. To date, data on the sources of atmospheric MP and deposition to river catchment areas are still sparse. We, therefore, took aerosol and total atmospheric deposition samples in the catchment area of the large German river Weser to estimate microplastic deposition fluxes (DFs) at six specific sites and airborne MP concentrations. Sampling in rural, suburban, and urban environments and wastewater treatment plants (WWTPs) was performed, aiming at a variation in airborne MP pollution and elucidating potential MP source areas. Aerosol samples were taken twice in April and October while monthly total deposition samples were collected over a period from March to October. Microplastics were detected in all analysed aerosol samples by Raman spectroscopy down to 4 µm, and in all 32 total deposition samples by µFT-IR down to 11 µm. Average MP number concentrations of 91 ± 47 m-3 were found in aerosol samples. The measured total MP number DFs ranged between 10 and 367 N m-2 day-1 (99 ± 85 mean ± SD) corresponding to total deposition of 0.05 ± 0.1 kg ha-1 per year and to an estimated 232 metric tons of plastic being deposited in the Weser River catchment annually. MP number DFs were higher in urban than rural sites. An effect of WWTPs on the MP abundance in air was not observed. Polypropylene, polyethylene, polyethylene terephthalate, polyvinyl chloride, polystyrene, and silicone fragments were found as the predominant polymer types in total deposition samples, while polyethylene particles dominated in aerosol samples. The results suggest that proximity to sources, especially to cities, increase the numbers of MP found in the atmosphere. It further indicates that atmospheric MP considerably contributes to the contamination of both aquatic and terrestrial habitats.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Plásticos , Polietileno/análise , Rios , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...