Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(8): 3196-3201, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37068046

RESUMO

Dispersion is present in every optical setup and is often an undesired effect, especially in nonlinear-optical experiments where ultrashort laser pulses are needed. Typically, bulky pulse compressors consisting of gratings or prisms are used to address this issue by precompensating the dispersion of the optical components. However, these devices are only able to compensate for a part of the dispersion (second-order dispersion). Here, we present a compact pulse-shaping device that uses plasmonic metasurfaces to apply an arbitrarily designed spectral phase delay allowing for a full dispersion control. Furthermore, with specific phase encodings, this device can be used to temporally reshape the incident laser pulses into more complex pulse forms such as a double pulse. We verify the performance of our device by using an SHG-FROG measurement setup together with a retrieval algorithm to extract the dispersion that our device applies to an incident laser pulse.

2.
ACS Nano ; 15(10): 16719-16728, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34606724

RESUMO

The nonlinear process of second harmonic generation (SHG) in monolayer (1L) transition metal dichalcogenides (TMD), like WS2, strongly depends on the polarization state of the excitation light. By combination of plasmonic nanostructures with 1L-WS2 by transferring it onto a plasmonic nanoantenna array, a hybrid metasurface is realized impacting the polarization dependency of its SHG. Here, we investigate how plasmonic dipole resonances affect the process of SHG in plasmonic-TMD hybrid metasurfaces by nonlinear spectroscopy. We show that the polarization dependency is affected by the lattice structure of plasmonic nanoantenna arrays as well as by the relative orientation between the 1L-WS2 and the individual plasmonic nanoantennas. In addition, such hybrid metasurfaces show SHG in polarization states, where SHG is usually forbidden for either 1L-WS2 or plasmonic nanoantennas. By comparing the SHG in these channels with the SHG generated by the hybrid metasurface components, we detect an enhancement of the SHG signal by a factor of more than 40. Meanwhile, an attenuation of the SHG signal in usually allowed polarization states is observed. Our study provides valuable insight into hybrid systems where symmetries strongly affect the SHG and enable tailored SHG in 1L-WS2 for future applications.

3.
Sci Adv ; 7(16)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33853788

RESUMO

Secret sharing is a well-established cryptographic primitive for storing highly sensitive information like encryption keys for encoded data. It describes the problem of splitting a secret into different shares, without revealing any information to its shareholders. Here, we demonstrate an all-optical solution for secret sharing based on metasurface holography. In our concept, metasurface holograms are used as spatially separable shares that carry encrypted messages in the form of holographic images. Two of these shares can be recombined by bringing them close together. Light passing through this stack of metasurfaces accumulates the phase shift of both holograms and optically reconstructs the secret with high fidelity. In addition, the hologram generated by each single metasurface can uniquely identify its shareholder. Furthermore, we demonstrate that the inherent translational alignment sensitivity between two stacked metasurface holograms can be used for spatial multiplexing, which can be further extended to realize optical rulers.

4.
Light Sci Appl ; 8: 70, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31645918

RESUMO

Optical metasurfaces open new avenues for the precise wavefront control of light for integrated quantum technology. Here, we demonstrate a hybrid integrated quantum photonic system that is capable of entangling and disentangling two-photon spin states at a dielectric metasurface. Via the interference of single-photon pairs at a nanostructured dielectric metasurface, a path-entangled two-photon NOON state with circular polarization that exhibits a quantum HOM interference visibility of 86 ± 4% is generated. Furthermore, we demonstrate nonclassicality andphase sensitivity in a metasurface-based interferometer with a fringe visibility of 86.8 ± 1.1% in the coincidence counts. This high visibility proves the metasurface-induced path entanglement inside the interferometer. Our findings provide a promising way to develop hybrid-integrated quantum technology operating in the high-dimensional mode space in various applications, such as imaging, sensing, and computing.

5.
Adv Mater ; 30(8)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29315903

RESUMO

The abrupt phase change of light at metasurfaces provides high flexibility in wave manipulation without the need for accumulation of propagating phase through dispersive materials. In the linear optical regime, one important application field of metasurfaces is imaging by planar metalenses, which enables device miniaturization and aberration correction compared to conventional optical microlens systems. With the incorporation of nonlinear responses into passive metasurfaces, optical functionalities of metalenses are anticipated to be further enriched, leading to completely new application areas. Here, imaging with nonlinear metalenses that combine the function of an ultrathin planar lens with simultaneous frequency conversion is demonstrated. With such nonlinear metalenses, imaging of objects with near infrared light while the image appears in the second harmonic signal of visible frequency range is experimentally demonstrated. Furthermore, the functionality of these nonlinear metalenses can be modified by switching the handedness of the circularly polarized fundamental wave, leading to either real or virtual nonlinear image formation. Nonlinear metalenses not only enable infrared light imaging through a visible detector but also have the ability to modulate nonlinear optical responses through an ultrathin metasurface device while the fundamental wave remains unaffected, which offers the capability of nonlinear information processing with novel optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...