Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36497667

RESUMO

The aim of the study is to evaluate the association between summer temperatures and emergency department visits (EDVs) in Bologna (Italy) and assess whether this association varies across areas with different socioeconomic and microclimatic characteristics. We included all EDVs within Bologna residences during the summers of 2010-2019. Each subject is attributed a deprivation and a microclimatic discomfort index according to the residence. A time-stratified case-crossover design was conducted to estimate the risk of EDV associated with temperature and the effect modification of deprivation and microclimatic characteristics. In addition, a spatial analysis of data aggregated at the census block level was conducted by applying a Poisson and a geographically weighted Poisson regression model. For each unit increase in temperature above 26 °C, the risk of EDV increases by 0.4% (95%CI: 0.05-0.8). The temperature-EDV relationship is not modified by the microclimatic discomfort index but rather by the deprivation index. The spatial analysis shows that the EDV rate increases with deprivation homogeneously, while it diminishes with increases in median income and microclimatic discomfort, with differences across areas. In conclusion, in Bologna, the EDV risk associated with high temperatures is not very relevant overall, but it tends to increase in areas with a low socioeconomic level.


Assuntos
Serviço Hospitalar de Emergência , Microclima , Estudos Cross-Over , Temperatura , Estações do Ano
2.
Artigo em Inglês | MEDLINE | ID: mdl-36429774

RESUMO

In 2019, the World Meteorological Organization published its "Guidance on Integrated Urban Hydrometeorological, Climate and Environment Services (Volume I: Concept and Methodology)" to assist WMO Members in developing and implementing the urban services that address the needs of city stakeholders in their countries. The guidance has relevant implications for not only protecting infrastructures from the impacts of climate change in the urban environment, but its proper declination strongly supports health-related policies to protect the population from direct and indirect impacts. Utilizing some principles of the guidance, the urbanized area of Bologna (Italy) was analyzed in order to furnish the municipality with tools coherent with the best practices actually emerging from the international bibliography to protect the citizens' health of this city. Specifically, the analysis concentrated on the public spaces and the potential vulnerabilities of the fragile population to high-temperature regimes in the city. Utilizing the guidance as a methodological framework, the authors developed a methodology to define the microclimate vulnerabilities of the city and specific cards to assist the policymakers in city regeneration. Because the medieval structure of the city does not allow the application of a wide set of nature-based solutions, our main attention was placed on the possibility of furnishing the city with a great number of pocket parks obtainable from spaces actually dedicated to parking lots, thus introducing new green infrastructures in a highly deprived area in order to assure safety spaces for the fragile population.


Assuntos
Mudança Climática , Política de Saúde , Cidades , Itália
3.
Artigo em Inglês | MEDLINE | ID: mdl-34064477

RESUMO

A microclimate classification of the entire Bologna Municipality has been carried out in order to give a tool to the local administration in the drafting of the General Urbanistic Plan (PUG). The city was classified considering the variation of air temperature as a function of the surface characteristics, the vegetation fraction, the building density and the H/W ratio (height to width). Starting from the microclimate analysis carried out with fluid-dynamic modeling (Envi-met) for some areas of the city of urban interest, the air temperature variation was correlated to the physiological equivalent temperature (PET) in order to make a classification of physiological well-being for the resident population. An urban map of a normalized microclimate well-being index (BMN) has been obtained to give support when private, and public actors want to regenerate part of the city, taking into account the climate-centered approach for the development of a sustainability city.


Assuntos
Clima , Microclima , Cidades , Itália , Temperatura
4.
Artigo em Inglês | MEDLINE | ID: mdl-32532012

RESUMO

Various environmental factors influence the outbreak and spread of epidemic or even pandemic events which, in turn, may cause feedbacks on the environment. The novel coronavirus disease (COVID-19) was declared a pandemic on 13 March 2020 and its rapid onset, spatial extent and complex consequences make it a once-in-a-century global disaster. Most countries responded by social distancing measures and severely diminished economic and other activities. Consequently, by the end of April 2020, the COVID-19 pandemic has led to numerous environmental impacts, both positive such as enhanced air and water quality in urban areas, and negative, such as shoreline pollution due to the disposal of sanitary consumables. This study presents an early overview of the observed and potential impacts of the COVID-19 on the environment. We argue that the effects of COVID-19 are determined mainly by anthropogenic factors which are becoming obvious as human activity diminishes across the planet, and the impacts on cities and public health will be continued in the coming years.


Assuntos
Infecções por Coronavirus , Poluição Ambiental/estatística & dados numéricos , Monitoramento Epidemiológico , Atividades Humanas/estatística & dados numéricos , Pandemias , Pneumonia Viral , Quarentena/estatística & dados numéricos , COVID-19 , Cidades , Ecossistema , Humanos , Saúde Pública
5.
Proc Natl Acad Sci U S A ; 112(9): 2788-93, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25730847

RESUMO

Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate-carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy-covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO2 uptake period (CUP) and the seasonal maximal capacity of CO2 uptake (GPPmax). The product of CUP and GPPmax explained >90% of the temporal GPP variability in most areas of North America during 2000-2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 (r(2) = 0.90) and GPP recovery after a fire disturbance in South Dakota (r(2) = 0.88). Additional analysis of the eddy-covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPPmax than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPPmax and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space.


Assuntos
Ecossistema , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Plantas , South Dakota
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...