Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Accid Anal Prev ; 193: 107334, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37832356

RESUMO

Disparities in injury tolerance and kinematic response remain understudied despite field data highlighting sex-based differences in injury risk. Furthermore, the automotive industry anticipates occupants will prefer reclined seating in highly automated vehicles. This study aimed to compare thoracolumbar spine kinematics and injuries between mid-size female and male post-mortem human subjects (PMHS) in reclined frontal impacts. Seven adult PMHS (three female, four male) were tested in reclined (50°) 50 km/h frontal impacts. The PMHS were seated on a semi-rigid seat and restrained by a prototype three-point seat belt system designed to mitigate submarining. The 3-D motions of five vertebrae and the pelvis were measured by an optical motion tracking system. Pressure transducers were inserted into intervertebral discs at three locations along the lumbar spine to track timing of lumbar vertebra fractures. Due to variations in the geometry of the pelvis and soft tissue surrounding the pelvis compared to the male subjects, the female subjects could not be positioned in the seat the same as the males, and, as a result, the females and their belt anchors needed to be translated forward in the seat to maintain similar belt geometry relative to the males. The females exhibited similar pre-test spinal curvatures and kinematics to the males. An L1 fracture was observed in one of three female subjects and two of four male subjects, and timing of these fractures were both similar (61 âˆ¼ 65 ms) and close to the time of peak downward seat force. Generally, the female and male subjects exhibited similar kinematic and injury responses in this reclined frontal impact sled test condition.


Assuntos
Acidentes de Trânsito , Fraturas Ósseas , Humanos , Masculino , Adulto , Feminino , Fenômenos Biomecânicos , Cadáver , Vértebras Lombares , Sujeitos da Pesquisa , Aceleração
2.
Ann Biomed Eng ; 51(11): 2566-2578, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37442922

RESUMO

The interaction of the three-point seat belt with the occupant, particularly the lap belt with the pelvis, is affected by a multitude of intrinsic and extrinsic factors, including the torso recline angle, lap belt angle, and occupant body mass index (BMI). While field data analyses have shown the strong safety benefit for seat belt use regardless of occupant size or crash direction, the term "submarining" historically has been used to describe a scenario in which the lap belt loads the abdominal soft tissue and organs, superior and posterior to the pelvic bone. While contemporary restraint systems work to effectively address the risk of submarining in occupants properly seated and properly belted, scenarios in which the lap belt may not properly engage the load-bearing pelvis remain. These scenarios, including a reclined torso angle or shallow lap belt angle, require further study. In this research study, eight non-injurious seated belt pull tests were conducted on two constrained whole-body cadavers of above-normal BMI (≥ 25 kg/m2) with controlled variation of torso and lap belt-pelvis angles. Test factors affecting belt engagement with the pelvis were identified for each subject. Belt engagement was largely affected by the initial placement of the lap belt. The initial belt placement was affected by the torso angle which influenced the distribution of the abdominal soft tissue. The belt disengagement thresholds differed between subjects due to the inter-subject differences in soft tissue distribution, which affected the lap belt kinematics relative to the pelvis. In addition to improving the understanding of this particular submarining mechanism, this study provides a dataset for future validation of human body model soft tissue deformation response from lap belt loading.

3.
Ann Biomed Eng ; 51(9): 1942-1949, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37405557

RESUMO

Iliac wing fractures due to lap belt loading have been identified in laboratory tests for almost 50 years and an analysis of recent data suggests these injuries are also occurring in the field. With the introduction of highly autonomous vehicles on the horizon, vehicle manufacturers are exploring open cabin concepts that permit reclined postures and separation of the occupant from the knee bolster and instrument panel. This will result in greater reliance on the lap belt and lap belt/pelvis loading to restrain occupants. No injury criteria exist for iliac wing fractures resulting from lap belt loading like that seen in frontal crash conditions. This study tested the tolerance of isolated iliac wings in a controlled lap belt-like loading environment while incorporating the effect of loading angle after analyzing lap belt loading experiments from a previous study. Twenty-two iliac wings were tested; nineteen of them sustained fracture (exact), but the loading input was insufficient to cause fracture in the other three (right censored). The fracture tolerance of the tested specimens ranged widely (1463-8895 N) and averaged 4091 N (SD 2381 N). Injury risk functions were created by fitting Weibull survival models to data that integrated censored and exact failure observations.


Assuntos
Fraturas Ósseas , Fraturas da Coluna Vertebral , Humanos , Acidentes de Trânsito , Fenômenos Biomecânicos , Pelve/lesões , Abdome
4.
Traffic Inj Prev ; 24(sup1): S55-S61, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37267016

RESUMO

OBJECTIVE: The goal of this study was to evaluate the effect of axial compression, employed with a follower-load mechanism, on the response of the lumbar spine in flexion and extension bending. Additional goals include measurement of both the kinetic (stiffness) and kinematic (deformation distribution) responses, evaluating how the responses vary across specimens, and to develop response corridors that can be used to evaluate human body models (HBMs) and anthropomorphic test devices (ATDs). METHODS: Seven mid-sized male adult lumbar spines (T12-S1) from postmortem human surrogates were tested in subinjurious flexion and extension bending with 0, 900, and 1800 N of superimposed axial compression. Tests were performed in load-control with a 6-DOF robotic test system that applied pure flexion and extension moments to the specimens, and axial compression was directed along the spine's curvature via a follower load mechanism powered by force-controlled linear actuators. Load-deformation response data were captured and used to characterize the kinetic response of the lumbar spine in flexion/extension, and how it varies with axial compression. Individual vertebral kinematics were captured using 3D motion capture and the data was used to illustrate the distribution of bending deformation across each intervertebral joint of the spine, as well has how that distribution changes with axial compression. These response data were used to develop elliptical path-length parameterized response corridors for surrogate biofidelity evaluation. RESULTS: The lumbar spine was found to be generally stiffer in extension than in flexion, but this difference decreased with increasing axial compression. The lumbar spine exhibited a nonlinear kinetic (moment vs. angle) response in flexion that became more linear and stiffer with the addition of axial compression. In flexion without axial load, the majority of the bending deformation occurred at the L5-S1 joint, whereas in extension, deformation was more evenly distributed across the different intervertebral levels, but the locus of deformation was located in the mid-proximal lumbar at L2-L3. CONCLUSIONS: The superposition of axial compression in the lumbar spine affects the kinetic and kinematic response of the lumbar spine in flexion and extension. The response data and approach detailed in this study permit better assessment of ATD and HBM biofidelity.


Assuntos
Acidentes de Trânsito , Vértebras Lombares , Adulto , Humanos , Masculino , Vértebras Lombares/fisiologia , Amplitude de Movimento Articular/fisiologia , Fenômenos Biomecânicos/fisiologia , Autopsia
5.
Ann Biomed Eng ; 51(6): 1216-1225, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36681746

RESUMO

Anticipating changes to vehicle interiors with future automated driving systems, the automobile industry recently has focused attention on crash response in novel postures with increased seatback recline. Prior research found that this posture may result in greater risk of lumbar spine injury in the event of a frontal crash. This study developed a lumbar spine injury risk function (IRF) that estimated injury risk as a function of simultaneously applied compression force and flexion moment. Force and moment failure data from 40 compression-flexion tests were utilized in a Weibull survival model, including appropriate data censoring. A mechanics-based injury metric was formulated, where lumbar spine compression force and flexion moment were normalized by specimen geometry. Subject age was incorporated as a covariate to further improve model fit. A weighting factor was included to adjust the influence of force and moment, and parameter optimization yielded a value of 0.11. Thus, the normalized compression force component had a greater effect on injury risk than the normalized flexion moment component. Additionally, as force was nominally increased, less moment was required to produce injury for a given age and specimen geometry. The resulting IRF may be utilized to improve occupant safety in the future.


Assuntos
Acidentes de Trânsito , Traumatismos da Coluna Vertebral , Humanos , Automóveis , Vértebras Lombares/fisiologia , Fenômenos Biomecânicos
6.
Traffic Inj Prev ; 24(1): 75-81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36525003

RESUMO

OBJECTIVE: Automobile booster seats are intended to improve belt fit for children that are too large for a harness-style child restraint, but not yet big enough to fit properly in an adult seat belt. Our objective was to prospectively study the relationship between booster seat design and interaction with the seat belt (specifically, submarining risk) for a child occupant using computer simulation of automobile crash events. METHODS: Frontal-impact simulations were performed with a 6-year-old child human body model. Simplified models of booster seats were developed using an automated process designed to capture key characteristics of booster geometry, stiffness, belt guide construction, and attachment to the vehicle seat. The child model was positioned in a range of postures from upright to slouched. Our main interest was submarining, where the child's pelvis slips under the lap belt and the belt loads into the abdomen (defined based on the motion of the lower lap belt edge relative to the ASIS). RESULTS: Among the parameters studied, the factors that had the greatest effect on submarining risk were the booster's stiffness and the child's posture. Booster models of a low-stiffness construction (similar to an inflatable booster) nearly always resulted in submarining, regardless of the other design characteristics of the booster. A slouched posture also substantially increased the likelihood of submarining (even for high-stiffness boosters). CONCLUSIONS: These results suggest that booster seats of a stiffer construction, and booster seats that promote an upright posture may provide a protective benefit compared to softer boosters and boosters that are more likely to result in slouching of the child.


Assuntos
Acidentes de Trânsito , Cintos de Segurança , Adulto , Criança , Humanos , Acidentes de Trânsito/prevenção & controle , Simulação por Computador , Desenho de Equipamento , Automóveis
7.
J Biomech ; 135: 111051, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35325753

RESUMO

Vehicle safety systems have substantially decreased motor vehicle crash-related injuries and fatalities, but injuries to the lumbar spine still have been reported. Experimental and computational analyses of upright and, particularly, reclined occupants in frontal crashes have shown that the lumbar spine can be subjected to simultaneous and out-of-phase combined axial compression and flexion loading. Lumbar spine failure tolerance in combined compression-flexion has not been widely explored in the literature. Therefore, the goal of this study was to measure the failure tolerance of the lumbar spine in combined compression and flexion. Forty lumbar spine segments with three vertebrae (one unconstrained) and two intervertebral discs (both unconstrained) were pre-loaded with axial compression (2200N, 3300N, or 4500N) and then subjected to rotation-controlled dynamic flexion bending until failure. Clinically relevant middle vertebra fractures were observed in twenty-one of the specimens, including compression and burst fractures. The remaining nineteen specimens experienced failure at the potting-grip interface. Failure tolerance varied within the sample and were categorized by the appropriate data censoring, with clinically relevant middle vertebrae fractures characterized as uncensored or left-censored and potting-grip fractures characterized as right-censored. Average failure force and moment were 3290N (range: 1580N to 5042N) and 51Nm (range: 0Nm to 156 Nm) for uncensored data, 3686N (range: 3145N to 4112N) and 0Nm for left-censored data, and 3470N (range: 2138N to 5062N) and 101Nm (range: 27Nm to 182Nm) for right-censored data. These data can be used to develop and improve injury prediction tools for lumbar spine fractures and further research in future safety systems.


Assuntos
Vértebras Lombares , Fraturas da Coluna Vertebral , Acidentes de Trânsito , Fenômenos Biomecânicos , Humanos , Amplitude de Movimento Articular
8.
J Biomech Eng ; 144(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34590691

RESUMO

The characterization of human subcutaneous adipose tissue (SAT) under high-rate loading is valuable for development of biofidelic finite element human body models (FE-HBMs) to predict seat belt-pelvis interaction and injury risk in vehicle crash simulations. While material characterization of SAT has been performed at 25 °C or 37 °C, the effect of temperature on mechanical properties of SAT under high-rate and large-deformation loading has not been investigated. Similarly, while freezing is the most common preservation technique for cadaveric specimens, the effect of freeze-thaw on the mechanical properties of SAT is also absent from the literature. Therefore, the aim of this study was to determine the effect of freezing and temperature on mechanical properties of human SAT. Fresh and previously frozen human SAT specimens were obtained and tested at 25 °C and 37 °C. High-rate indentation and puncture tests were performed, and indentation-puncture force-depth responses were obtained. While the chance of material failure was found to be different between temperatures and between fresh and previously frozen tissue, statistical analyses revealed that temperature and freezing did not change the shear modulus and failure characteristics of SAT. Therefore, the results of the current study indicated that SAT material properties characterized from either fresh or frozen tissue at either 25 °C or 37 °C could be used for enhancing the biofidelity of FE-HBMs.


Assuntos
Tecido Adiposo , Punções , Fenômenos Biomecânicos , Congelamento , Humanos , Temperatura
9.
Traffic Inj Prev ; 22(8): 623-628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34468249

RESUMO

OBJECTIVE: To optimize the components of restraint systems for protecting obese (BMI = 35 kg/m2) and normal BMI (BMI = 25) human body models (HBMs) in frontal crash simulations, and to compare the two optimized designs. METHODS: The Life Years Lost metric, which incorporates the risk of injury and long-term disability to different body regions, was used as the optimization objective function. Parametric simulations, sampled from a 15-parameter design space using the Latin Hypercube technique, were performed and metamodels of the HBM responses were developed. A genetic algorithm was applied to the metamodels to identify the optimized designs. RESULTS: While most of the restraint parameters between the optimized design for obese and normal BMI HBMs were similar, the main difference was that the restraint for the obese HBM included an under-the-seat airbag, which mitigated its lower extremity excursion, improved its torso kinematics, and decreased its lower extremity and lumbar spine injury risks. The optimized designs for both HBMs included an inflatable seat belt, which reduced the risk of thoracic injury. CONCLUSIONS: The design recommendations from this study should be considered to improve safety of occupants with obesity.


Assuntos
Acidentes de Trânsito , Air Bags , Fenômenos Biomecânicos , Índice de Massa Corporal , Humanos , Obesidade , Cintos de Segurança
10.
Traffic Inj Prev ; 22(sup1): S128-S133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34402342

RESUMO

OBJECTIVE: Self-driving technology will bring novelty in vehicle interior design and allow for a wide variety of occupant seating choices. Previous studies have shown that the increased risk of submarining exhibited by reclined occupants cannot be fully mitigated by changes in the seat configuration alone. This study aims to investigate the effects of three restraint countermeasures on cases with marginal submarining events and estimate their effect on submarining risk and injury prediction metrics. METHODS: Vehicle environment frontal crash Finite Element (FE) simulations were performed with the two simplified Global Human Body Model Consortium (GHBMC) occupant models: small female and midsize male. The baseline occupant restraints consisted of a frontal airbag, a seatback-integrated 3-point belt with a lap belt anchor pre-tensioner, and a retractor-mounted pre-tensioner and load limiter. Based on submarining thresholds identified in previous studies, three baseline configurations were identified for each occupant size. For each baseline case three restraint system modifications were evaluated. The modifications consisted of the introduction of a pelvis restraint cushion airbag (PRC), the use of a knee airbag (KAB) and the modification of the of the passenger airbag location (PAB). Simulations were performed using the USNCAP 56 km/h frontal crash pulse. Occupant kinematic data was extracted from each simulation to investigate how changes in the restraint system configuration affects submarining. RESULTS: Overall, in only one of the investigated cases did the proposed restraint modification prevent submarining occurrence, however each of the restraint modifications reduced the pelvis excursion over the baseline scenario. The presence of the PRC airbag showed the highest reduction in pelvis forward excursion for the female model. The presence of the KAB and the modified location of the PAB also contributed to reductions in excursion to a smaller degree. For the male surrogate, the KAB showed the highest reduction in pelvis forward excursion. The presence of the PRC led to a reduction in the lumbar spine shear force. CONCLUSIONS: Submarining may be a major challenge to overcome for reclined occupants in autonomous driving systems. This suggests that there may not be a single generalizable currently-existing countermeasure able to effectively prevent marginal submarining cases in reclined positions.


Assuntos
Air Bags , Condução de Veículo , Acidentes de Trânsito , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Pelve
11.
Acta Biomater ; 129: 188-198, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048975

RESUMO

The mechanical behavior of subcutaneous adipose tissue (SAT) affects the interaction between vehicle occupants and restraint systems in motor vehicle crashes (MVCs). To enhance future restraints, injury countermeasures, and other vehicle safety systems, computational simulations are often used to augment experiments because of their relative efficiency for parametric analysis. How well finite element human body models (FE-HBMs), which are often used in such simulations, predict human response has been limited by the absence of material models for human SAT that are applicable to the MVC environment. In this study, for the first time, dynamic multidirectional unconfined compression and simple shear loading tests were performed on human abdominal SAT specimens under conditions similar to MVCs. We also performed multiple ramp-hold tests to evaluate the quasilinear viscoelasticity (QLV) assumption and capture the stress relaxation behavior under both compression and shear. Our mechanical characterization was supplemented with scanning electron microscopy (SEM) performed in different orientations to investigate whether the macrostructural response can be related to the underlying microstructure. While the overall structure was shown to be visually different in different anatomical planes, a preferred orientation of any fibrous structures could not be identified. We showed that the nonlinear, viscoelastic, and direction-dependent responses under compression and shear tests could be captured by incorporating QLV in an Ogden-type hyperelastic model. Our comprehensive approach will lead to more accurate computational simulations and support the collective effort on the research of future occupant protection systems. STATEMENT OF SIGNIFICANCE: There is an urgent need to characterize the mechanical behavior of human adipose tissue under multiple dynamic loading conditions, and to identify constitutive models that are able to capture the tissue response under these conditions. We performed the first series of experiments on human adipose tissue specimens to characterize the multi-directional compression and shear behavior at impact loading rates and obtained scanning electron microscope images to investigate whether the macrostructural response can be related to the underlying microstructure. The results showed that human adipose tissue is nonlinear, viscoelastic and direction dependent, and its mechanical response under compression and shear tests at different loading rates can be captured by incorporating quasi-linear viscoelasticity in an Ogden-type hyperelastic model.


Assuntos
Tecido Adiposo , Modelos Biológicos , Elasticidade , Análise de Elementos Finitos , Humanos , Pressão , Estresse Mecânico , Viscosidade
12.
J Biomech Eng ; 143(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33625495

RESUMO

Mechanical models of adipose tissue are important for various medical applications including cosmetics, injuries, implantable drug delivery systems, plastic surgeries, biomechanical applications such as computational human body models for surgery simulation, and blunt impact trauma prediction. This article presents a comprehensive review of in vivo experimental approaches that aimed to characterize the mechanical properties of adipose tissue, and the resulting constitutive models and model parameters identified. In particular, this study examines the material behavior of adipose tissue, including its nonlinear stress-strain relationship, viscoelasticity, strain hardening and softening, rate-sensitivity, anisotropy, preconditioning, failure behavior, and temperature dependency.


Assuntos
Viscosidade
13.
J Mech Behav Biomed Mater ; 113: 104112, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33010697

RESUMO

Understanding the mechanical properties of human adipose tissue, and its influence on seat belt-pelvis interaction is beneficial for computational human body models that are developed for injury prediction in the vehicle crashworthiness simulations. While various studies have characterized adipose tissue, most of the studies used porcine adipose tissue as a surrogate, and none of the studies were performed at loading rates relevant for motor vehicle collisions. In this work, the mechanical response of human and porcine adipose tissue was studied. Two dynamic loading modes (compression and simple shear) were tested in adipose tissue extracted from the human abdomen and porcine back. An Ogden hyperelastic model was used to fit the loading response, and specific material parameters were obtained for each specimen. Two-sample t-tests were performed to compare the effective shear moduli and peak stresses from porcine and human samples. The material response of the human adipose tissue was consistent with previous studies. Porcine adipose tissue was found to be significantly stiffer than human adipose tissue under compression and shear loading. Also, when material model parameters were fit to only one loading mode, the predicted response in the other mode showed a poor fit.


Assuntos
Tecido Adiposo , Animais , Elasticidade , Humanos , Projetos Piloto , Pressão , Estresse Mecânico , Suínos
14.
Comput Methods Biomech Biomed Engin ; 24(6): 597-611, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33179985

RESUMO

The objective of this study was to leverage and compare multiple machine learning techniques for predicting the human body model response in restraint design simulations. Parametric simulations with 16 independent variables were performed. Ordinary least-squares (OLS), least absolute shrinkage and selection operator (LASSO), neural network (NN), support vector regression (SVR), regression forest (RF), and an ensemble method were used to develop response surface models of the simulations. The hyperparameters of the machine learning techniques were optimized through grid search and cross-validation to avoid under-fitting and over-fitting. The ensemble method outperformed other techniques, followed by LASSO, SVR, NN, RF, and OLS. Findings indicated that optimizing the metamodel hyper-parameters are essential to predict the optimum set of restraint design parameters.


Assuntos
Simulação por Computador , Corpo Humano , Aprendizado de Máquina , Análise de Elementos Finitos , Humanos , Redes Neurais de Computação , Máquina de Vetores de Suporte
15.
Traffic Inj Prev ; 21(sup1): S66-S71, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33206553

RESUMO

OBJECTIVE: Highly automated vehicles may permit alternative seating postures, which could alter occupant kinematics and challenge current restraint designs. One predicted posture is a reclined seated position. While the spine of upright occupants is subjected to flexion during frontal crashes, the orientation of reclined occupants tends to subject the spine to high compressive loads followed by high flexion loads. This study aims to investigate kinematics and mechanisms of loading in the thoracolumbar spine for a reclined seated posture through the use of postmortem human subjects (PMHS). METHODS: Frontal impact sled tests (50 kph delta-v) were conducted on five adult midsize male PMHS seated with the torso reclined to 50 degrees with respect to the vertical. The PMHS were seated on a semi-rigid seat and restrained by a seat-integrated three-point belt with dual lap-belt pretensioners and a shoulder-belt pretensioner with a 3 kN load-limiter. 3-D kinematic trajectories of five chosen vertebrae, and the pelvis were measured relative to the vehicle buck. Intervertebral pressure transducers were installed at three locations in the lumbar column to detect load timing. RESULTS: Three PMHS suffered fractures at L1. Combined compression and flexion of the thoracolumbar spine occurred in all tests, but the magnitude of peak flexion varied across the PMHS. During the PMHS' forward excursion, the pelvis rotated anteriorly in two tests and posteriorly in two tests (lap-belt submarining occurred in one). In one test, the pelvis mount interacted with the seat, but did not affect kinematics. CONCLUSIONS: Anterior rotation of the pelvis caused increased extension of the lumbar spine, which exacerbated lumbar compression in two of the PMHS; the one subject whose pelvis kinematic tracking was lost exhibited similar compression kinematics. Posterior rotation of the pelvis enabled lumbar flexion, which decreased lumbar compression, but lead to lap-belt submarining in one case. Lumbar kinematics for these reclined frontal impacts were sensitive to changes in initial posture of the spine (magnitude of lordosis or kyphosis) and pelvis (pitch angle). To our knowledge, this study is the first to analyze thoracolumbar kinematics and resulting injuries of a reclined seating posture using PMHS.


Assuntos
Acidentes de Trânsito/estatística & dados numéricos , Vértebras Lombares/fisiopatologia , Postura Sentada , Traumatismos da Coluna Vertebral/epidemiologia , Vértebras Torácicas/fisiopatologia , Adulto , Fenômenos Biomecânicos , Cadáver , Humanos , Masculino
16.
Traffic Inj Prev ; 21(sup1): S1-S6, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32658549

RESUMO

OBJECTIVE: Self-driving technology will bring novelty in vehicle interior design and allow for a wide variety of occupant seating choices. Thus, vehicle safety systems may be challenged to protect occupants over a wider range of potential postures. This study aims to investigate the effects of the seat cushion angle on submarining risk, lumbar spine loads and pelvis excursion for reclined occupants in frontal crashes. METHODS: Frontal crash finite element simulations were performed with two of the simplified Global Human Body Model Consortium (GHBMC) occupant models: the small female and the midsize male. Occupant restraints consisted of a frontal airbag, a seatback-integrated 3-point belt with a lap belt anchor pre-tensioner, and a retractor pre-tensioner with a force limiter. For each simulation, parameters including seat cushion angle (3°, 8°, 13°), seatback recline angle (0°, 10°, 20°, 30°), and knee bolster (KB) position relative to the occupant (baseline and no KB) were varied. A full-factorial simulation matrix was performed using the USNCAP 56 km/h frontal crash pulse. Occupant kinematics data were extracted from each simulation to investigate how changes in seat cushion angle, anthropometry, seatback angle, and KB position would affect submarining across all simulated cases. RESULTS: Overall, the F05-OS female model was more likely to submarine when compared to the male occupant model. The threshold for submarining was also affected by the seat cushion angle, seatback angle and KB distance. For the F05-OS model, increasing the seat cushion angle to 13° prevented submarining in the 10° seatback angle case, regardless of the KB position. Similarly, the 13° cushion angle prevented submarining for the M50-OS in the 30° seatback angle configuration but only in the presence of a KB. The results further show an increased lumbar flexion load with increased seat recline angle, as well as occupant-to-KB distance, although an opposite trend with the increased seat cushion angle. CONCLUSIONS: Submarining may be a major challenge to overcome for reclined occupants in autonomous driving systems. This study shows that seat cushion angle plays a role in restraining occupants in recline scenarios, but it is not sufficient to prevent submarining without additional countermeasures.


Assuntos
Acidentes de Trânsito/estatística & dados numéricos , Automação , Automóveis/estatística & dados numéricos , Postura/fisiologia , Equipamentos de Proteção , Fenômenos Biomecânicos , Simulação por Computador , Desenho de Equipamento , Feminino , Humanos , Vértebras Lombares/fisiologia , Masculino , Modelos Anatômicos , Pelve/fisiologia , Risco
17.
Stapp Car Crash J ; 64: 83-153, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33636004

RESUMO

Frontal impacts with reclined occupants are rare but severe, and they are anticipated to become more common with the introduction of vehicles with automated driving capabilities. Computational and physical human surrogates are needed to design and evaluate injury countermeasures for reclined occupants, but the validity of such surrogates in a reclined posture is unknown. Experiments with post-mortem human subjects (PMHS) in a recline posture are needed both to define biofidelity targets for other surrogates and to describe the biomechanical response of reclined occupants in restrained frontal impacts. The goal of this study was to evaluate the kinematic and injury response of reclined PMHS in 30 g, 50 km/h frontal sled tests. Five midsize adult male PMHS were tested. A simplified semi-rigid seat with an anti-submarining pan and a non-production threepoint seatbelt (pre-tensioned, force-limited, seat-integrated) were used. Global motions and local accelerations of the head, pelvis, and multiple vertebrae were measured. Seat and seatbelt forces were also measured. Injuries were assessed via post-test dissection. The initial reclined posture aligned body regions (pelvis, lumbar spine, and ribcage) in a way that reduced the likelihood of effective restraint by the seat and seatbelt: the occupant's pelvis was initially rotated posteriorly, priming the occupant for submarining, and the lumbar spine was loaded in combined compression and bending due to the inertia of the upper torso during forward excursion. Coupled with the high restraining forces of the seat and seatbelt, the unfavorable kinematics resulted in injuries of the sacrum/coccyx (four of five PMHS injured), iliac wing (two of five PMHS injured), lumbar spine (three of five PMHS injured), and ribcage (all five PMHS suffered sternal fractures, and three of five PMHS suffered seven or more rib fractures). The kinematic and injury outcomes strongly motivate the development of injury criteria for the lumbar spine and pelvis, the inclusion of intrinsic variability (e.g., abdomen depth and pelvis shape) in computational simulations of frontal impacts with reclined occupants, and the adaptation of comprehensive restraint paradigms to predicted variability of occupant posture.


Assuntos
Acidentes de Trânsito , Cintos de Segurança , Aceleração , Adulto , Fenômenos Biomecânicos , Cadáver , Humanos , Masculino , Sujeitos da Pesquisa
18.
Int J Obes (Lond) ; 44(6): 1319-1329, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31740724

RESUMO

BACKGROUND: Previous studies have shown that occupants with obesity are at a greater risk of fatality and serious injury than other occupants in motor vehicle crashes. OBJECTIVE: To provide a more complete description of the most frequent injuries and the most frequently injured body regions for occupants with obesity. METHODS: Sampled cases (n = 13,470) representing ~4.7 million adult occupants involved in frontal crashes (between 2000 and 2015) were selected from the U.S. National Automotive Sampling System-Crashworthiness Data System database. A retrospective cohort study was performed to study the effect of BMI on the risk of injury to different body regions and to identify the most frequent injuries to occupants with different BMIs. Lastly, in-depth crash analysis cases from the U.S. Crash Injury Research and Engineering Network (CIREN) database were studied to elucidate the source of the most common injuries to occupants with obesity. RESULTS: Occupants with obesity experienced a higher risk of upper extremity (4.79 vs 2.92%), lower extremity (8.37 vs 3.23%), and spine (1.53 vs 1.09%) injuries than other occupants. After adjusting for other variables, the risks of spinal, thoracic, and extremities injuries were found to be affected by the BMI class. Seven out of the ten most common injuries sustained by occupants with obesity were lower extremity injuries, and talus fractures were the most common overall. Direct loading through the plantar surface of the foot by the vehicle toe pan was found to be a likely cause of many of those injuries based on CIREN cases. CONCLUSIONS: The injuries of occupants with obesity are different than other occupants which can be attributed to their different interaction with the seat belt and vehicle interior. The findings of this study should be considered for designing restraint systems to protect occupants with obesity in car crashes.


Assuntos
Acidentes de Trânsito , Índice de Massa Corporal , Ferimentos e Lesões/epidemiologia , Adulto , Feminino , Humanos , Masculino , Obesidade , Estudos Retrospectivos , Fatores de Risco , Cintos de Segurança , Estados Unidos/epidemiologia
19.
Traffic Inj Prev ; 20(sup2): S123-S127, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31539280

RESUMO

Objective: Self-driving technology will bring novelty in occupant seating choices and vehicle interior design. Thus, vehicle safety systems may be challenged to protect occupants over a wider range of potential postures and seating choices. This study aims to investigate the effects of occupant size, seat recline, and knee bolster position on submarining risk and injury prediction metrics for reclined occupants in frontal crashes.Methods: Frontal crash finite element (FE) simulations were performed with the 3 simplified Global Human Body Model Consortium (GHBMC) occupant models: small female, midsize male, and large male. Additionally, a detailed GHBMC midsize male model was used to compare with selected simplified cases. For each simulation, parameters including seatback recline angle (0.9°, 10.9°, 20.9°, 30.9°) and knee bolster position relative to the occupant (baseline, close, far, and no knee bolster) were varied. Impacts were simulated with the U.S. New Car Assessment Program 56 km/h frontal crash pulse. Occupant kinematics data were extracted from each simulation in a full-factorial sensitivity study to investigate how changes in anthropometry, seating position, and knee bolster position would affect submarining across all simulated cases.Results: Overall, increasing the occupant-to-knee bolster distance resulted in more submarining cases. The threshold for submarining was also affected by the seat recline angle. The lowest threshold observed occurred with 10.9° of recline with the small female model. Submarining was observed at recline angles at and above 20.9° for the midsize male model and 30° for the large male model. The initial lap belt position, pelvis orientation, and their relationship were good predictors of submarining. Increased lumbar flexion moment was observed with increased seat recline angle as well as occupant-to-knee bolster distance. The detailed GHBMC model was more prone to submarining than the simplified model.Conclusions: Submarining may be a major challenge to overcome for reclined occupants, which may become more prevalent with autonomous driving systems. This study shows that the angle of recline, anthropometric variation, and position of the knee bolster affect the risk of submarining. To our knowledge, this is the first study to computationally evaluate the occupant protection implications of seatback recline for multiple body sizes, postures, and positions relative to the vehicle interior.


Assuntos
Acidentes de Trânsito , Automação/instrumentação , Automóveis , Cintos de Segurança/efeitos adversos , Ferimentos e Lesões/etiologia , Antropometria/métodos , Condução de Veículo , Fenômenos Biomecânicos , Desenho de Equipamento , Feminino , Humanos , Joelho/anatomia & histologia , Masculino , Pelve/anatomia & histologia , Postura , Segurança
20.
Traffic Inj Prev ; 19(6): 623-628, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30260233

RESUMO

OBJECTIVE: Recreational off-highway vehicle (ROHV) crashes are of concern because sales of these vehicles have been growing rapidly and because newer vehicles tend to have significantly greater performance than older models. We evaluated the available data to understand trends in ROHV crashes and the factors that contributed to serious injury. METHODS: We combined information from (1) the Fatality Analysis Reporting System (FARS), (2) a database compiled by the Consumer Product Safety Commission, and (3) a vehicle sales database. These aggregated data were used to describe trends, demographics, and frequent causes of serious injuries and fatalities. RESULTS: On-road fatal crashes grew from 0 in the year 2000 to 37 in 2015; at the same time, sales grew from approximately 100,000 to 400,000 vehicles annually. Much of the increase in ROHV sales was in 2 new, higher performance classes of vehicles. Further, seat belt and helmet use in this cohort was rare (at least 46% unbelted, only 2% confirmed to be helmeted) and drinking and driving was common (57% of crashes in FARS). These vehicles appear to have increased potential for rollover, which often led unbelted occupants to be ejected, putting them at risk of being injured as the vehicle rolled on top of them. CONCLUSIONS: Serious ROHV crashes have grown with sales. Resulting injuries appear to be strongly influenced by inconsistent seat belt use, frequent drunk driving, and increased propensity for the vehicles to roll over.


Assuntos
Acidentes , Veículos Off-Road , Acidentes/estatística & dados numéricos , Adolescente , Adulto , Consumo de Bebidas Alcoólicas , Qualidade de Produtos para o Consumidor , Análise de Dados , Bases de Dados Factuais , Feminino , Humanos , Masculino , Segurança , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...