Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 143(18): 184309, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26567664

RESUMO

The nucleophilic substitution reaction CN(-) + CH3I allows for two possible reactive approaches of the reactant ion onto the methyl halide, which lead to two different product isomers. Stationary point calculations predict a similar shape of the potential and a dominant collinear approach for both attacks. In addition, an H-bonded pre-reaction complex is identified as a possible intermediate structure. Submerged potential energy barriers hint at a statistical formation process of both CNCH3 and NCCH3 isomers at the experimental collision energies. Experimental angle- and energy differential cross sections show dominant direct rebound dynamics and high internal excitation of the neutral product. No distinct bimodal distributions can be extracted from the velocity images, which impedes the indication of a specific preference towards any of the product isomers. A forward scattering simulation based on the experimental parameters describes accurately the experimental outcome and shows how the possibility to discriminate between the two isomers is mainly hindered by the large product internal excitation.

2.
Rev Sci Instrum ; 84(5): 055115, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23742597

RESUMO

We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C(n)(-), n = 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C2 (-) molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s ± 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10(-14) mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity.

3.
Rep Prog Phys ; 75(6): 066901, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22790651

RESUMO

We review the gas-phase chemistry in extraterrestrial space that is driven by reactions with atomic and molecular ions. Ions are ubiquitous in space and are potentially responsible for the formation of increasingly complex interstellar molecules. Until recently, positively charged atoms and molecules were the only ions known in space; however, this situation has changed with the discovery of various molecular anions. This review covers not only the observation, distribution and reactions of ions in space, but also laboratory-based experimental and theoretical methods for studying these ions. Recent results from space-based instruments, such as those on the Cassini-Huygens space mission and the Herschel Space Observatory, are highlighted.


Assuntos
Meio Ambiente Extraterreno/química , Íons/química , Modelos Químicos
4.
J Phys Chem A ; 114(14): 4843-6, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20148540

RESUMO

Dissociative recombination of the Zundel cation D(5)O(2)(+) almost exclusively produces D + 2 D(2)O with a maximum kinetic energy release of 5.1 eV. An imaging technique is used to investigate the distribution of the available reaction energy among these products. Analysis shows that as much as 4 eV can be stored internally by the molecular fragments, with a preference for producing highly excited molecular fragments, and that the deuteron shows a nonrandom distribution of kinetic energies. A possible mechanism and the implications for these observations are addressed.

5.
J Chem Phys ; 128(13): 134308, 2008 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-18397065

RESUMO

The dissociative recombination of OPCl+ and OPCl2+ has been studied at the storage ring CRYRING. The rate constants as a function of electron temperature have been derived to be 7.63 x 10(-7)(Te/300)(-0.89) and >1.2 x 10(-6)(Te/300)(-1.22) cm3s(-1), respectively. The lower limit quoted for the latter rate constant reflects the experimental inability to detect all of the reaction products. The branching fractions from the reaction have been measured for OPCl+ at approximately 0 eV interaction energy and are determined to be N(O+P+Cl)=(16+/-7)%, N(O+PCl)=(16+/-3)% and N(OP+Cl)=(68+/-5)%. These values have been obtained assuming that the rearrangement channel forming P+ClO is negligible, and ab initio calculations using GAUSSIAN03 are presented for the ion structures and energetics to support such an assumption. Finally, the limitations to using heavy ion storage rings such as CRYRING for studies into the dissociative recombination of large singly charged molecular ions are discussed.


Assuntos
Cloro/química , Modelos Químicos , Modelos Moleculares , Aceleradores de Partículas , Compostos de Fósforo/química , Simulação por Computador
6.
Phys Rev Lett ; 98(22): 223201, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17677840

RESUMO

We report the first observation of almost exclusive three-body breakup in the dissociative recombination of a covalent triatomic molecular ion O3+. The three-body channel, constituting about 94% of the total reactivity, has been investigated in detail. The atomic fragments are formed in only the first two electronic states, 3P and 1D, while formation in the 1S state has not been observed. The breakup predominantly proceeds through dissociative states with linear geometry.

7.
Phys Rev Lett ; 99(1): 013201, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17678152

RESUMO

We have studied the dissociative recombination (DR) of molecular hydrogen ions with slow electrons over a range of collision energies from 0 to 400 meV. By employing a pulsed expansion source for rotational cooling and by exploiting super elastic collisions with near-0-eV electrons in a heavy ion storage ring for vibrational cooling, we observe a highly structured DR cross section, comparable to that reported for HD+. Using para-hydrogen-enriched ion beams, we identify for the first time features in the DR cross sections attributed to nu=0, J=even molecules (para-H2) and nu=0, J=odd (ortho-H2) molecules, separately. Indications are given that para levels have different DR rate coefficients from ortho levels for the first four vibrational levels at near-0-eV collisions.

8.
J Chem Phys ; 127(1): 014305, 2007 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-17627344

RESUMO

We report an investigation into the dissociative recombination of the azide radical cation, N(3) (+). The reaction rate constant has been measured to be 6.47 x 10(-7) cm(3) s(-1) at room temperature. This value is smaller than those reported earlier for the ion-electron neutralization of N(3) (+) at nitrogen atmospheric pressure. A strong propensity to dissociate through the N(2)+N channel has been observed.

9.
Faraday Discuss ; 133: 177-90; discussion 191-230, 449-52, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17191449

RESUMO

The branching ratios of the different reaction pathways and the overall rate coefficients of the dissociative recombination reactions of CH3OH2+ and CD3OD2+ have been measured at the CRYRING storage ring located in Stockholm, Sweden. Analysis of the data yielded the result that formation of methanol or deuterated methanol accounted for only 3 and 6% of the total rate in CH3OH2+ and CD3OD2+, respectively. Dissociative recombination of both isotopomeres mainly involves fragmentation of the C-O bond, the major process being the three-body break-up forming CH3, OH and H (CD3, OD and D). The overall cross sections are best fitted by sigma = 1.2 +/- 0.1 x 10(-15) E(-1.15 +/- 0.02) cm2 and sigma = 9.6 +/- 0.9 x 10(-16) E(-1.20 +/- 0.02) cm2 for CH3OH2+ and CD3OD2+, respectively. From these values thermal reaction rate coefficients of k(T) = 8.9 +/- 0.9 x 10(-7) (T/300)(-0.59 +/- 0.02) cm3 s(-1) (CH3OH2+) and k(T) = 9.1 +/- 0.9 x 10(-7) (T/300)(-0.63 +/- 0.02) cm3 s(-1) (CD3OD2+) can be calculated. A non-negligible formation of interstellar methanol by the previously proposed mechanism via radiative association of CH3+ and H2O and subsequent dissociative recombination of the resulting CH3OH2+ ion to yield methanol and hydrogen atoms is therefore very unlikely.

11.
J Chem Phys ; 122(15): 156101, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15945665

RESUMO

Product branching ratios and thermal rate coefficients for the dissociative recombination of C3D(+)7 and C4D(+)9 have been measured in the ion storage ring CRYRING. The results for C3D(+)7 are believed to be slightly more accurate than those obtained earlier for C3H(+)7. Only the C-C bond breaking channels could be measured for C4D(+)9 and were found to be in excellent agreement with earlier data.

12.
Phys Chem Chem Phys ; 7(8): 1664-8, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19787922

RESUMO

We have investigated the dissociative recombination of the N2O+ ion using the CRYRING heavy-ion storage ring at the Manne Siegbahn laboratory in Stockholm, Sweden. The dissociative recombination branching ratios were determined at minimal (approximately 0 eV) collision energy, showing that the dominating pathways involved two-body fragmentation: N2 + O (48%) and NO + N (36%). The branching ratio of the three-body break-up 2N + O was 16%. The overall thermal rate coefficient of the title reaction follows the expression k(T) = 3.34 +/- 0.75 x 10(-7) (T/300) (-0.57+/- 0.03 cm3 s(-1)), which correlates perfectly with earlier flowing afterglow studies on the same process.


Assuntos
Óxido Nitroso/química , Cinética , Termodinâmica
13.
J Chem Phys ; 121(12): 5700-8, 2004 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-15366993

RESUMO

Dimethyl disulfide (DMDS) and N-methylacetamide are two first choice model systems that represent the disulfide bridge bonding and the peptide bonding in proteins. These molecules are therefore suitable for investigation of the mechanisms involved when proteins fragment under electron capture dissociation (ECD). The dissociative recombination cross sections for both protonated DMDS and protonated N-methylacetamide were determined at electron energies ranging from 0.001 to 0.3 eV. Also, the branching ratios at 0 eV center-of-mass collision energy were determined. The present results give support for the indirect mechanism of ECD, where free hydrogen atoms produced in the initial fragmentation step induce further decomposition. We suggest that both indirect and direct dissociations play a role in ECD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...