Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Top Life Sci ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084755

RESUMO

Biocultural diversity is the ever-evolving and irreplaceable sum total of all living organisms inhabiting the Earth. It plays a significant role in sustainable productivity and ecosystem services that benefit humanity and is closely allied with human cultural diversity. Despite its essentiality, biodiversity is seriously threatened by the insatiable and inequitable human exploitation of the Earth's resources. One of the benefits of biodiversity is its utilization in crop improvement, including cropping improvement (agronomic cultivation practices) and genetic improvement (plant breeding). Crop improvement has tended to decrease agricultural biodiversity since the origins of agriculture, but awareness of this situation can reverse this negative trend. Cropping improvement can strive to use more diverse cultivars and a broader complement of crops on farms and in landscapes. It can also focus on underutilized crops, including legumes. Genetic improvement can access a broader range of biodiversity sources and, with the assistance of modern breeding tools like genomics, can facilitate the introduction of additional characteristics that improve yield, mitigate environmental stresses, and restore, at least partially, lost crop biodiversity. The current legal framework covering biodiversity includes national intellectual property and international treaty instruments, which have tended to limit access and innovation to biodiversity. A global system of access and benefit sharing, encompassing digital sequence information, would benefit humanity but remains an elusive goal. The Kunming-Montréal Global Biodiversity Framework sets forth an ambitious set of targets and goals to be accomplished by 2030 and 2050, respectively, to protect and restore biocultural diversity, including agrobiodiversity.

2.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894980

RESUMO

The common bean (Phaseolus vulgaris L.) is a globally cultivated leguminous crop. Fusarium wilt (FW), caused by Fusarium oxysporum f. sp. phaseoli (Fop), is a significant disease leading to substantial yield loss in common beans. Disease-resistant cultivars are recommended to counteract this. The objective of this investigation was to identify single nucleotide polymorphism (SNP) markers associated with FW resistance and to pinpoint potential resistant common bean accessions within a core collection, utilizing a panel of 157 accessions through the Genome-wide association study (GWAS) approach with TASSEL 5 and GAPIT 3. Phenotypes for Fop race 1 and race 4 were matched with genotypic data from 4740 SNPs of BARCBean6K_3 Infinium Bea Chips. After ranking the 157-accession panel and revealing 21 Fusarium wilt-resistant accessions, the GWAS pinpointed 16 SNPs on chromosomes Pv04, Pv05, Pv07, Pv8, and Pv09 linked to Fop race 1 resistance, 23 SNPs on chromosomes Pv03, Pv04, Pv05, Pv07, Pv09, Pv10, and Pv11 associated with Fop race 4 resistance, and 7 SNPs on chromosomes Pv04 and Pv09 correlated with both Fop race 1 and race 4 resistances. Furthermore, within a 30 kb flanking region of these associated SNPs, a total of 17 candidate genes were identified. Some of these genes were annotated as classical disease resistance protein/enzymes, including NB-ARC domain proteins, Leucine-rich repeat protein kinase family proteins, zinc finger family proteins, P-loopcontaining nucleoside triphosphate hydrolase superfamily, etc. Genomic prediction (GP) accuracy for Fop race resistances ranged from 0.26 to 0.55. This study advanced common bean genetic enhancement through marker-assisted selection (MAS) and genomic selection (GS) strategies, paving the way for improved Fop resistance.


Assuntos
Fusarium , Phaseolus , Fusarium/genética , Estudo de Associação Genômica Ampla , Phaseolus/genética , Genômica , Doenças das Plantas/genética , Resistência à Doença/genética
3.
Plant Phenomics ; 5: 0021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37040284

RESUMO

Proximal remote sensing offers a powerful tool for high-throughput phenotyping of plants for assessing stress response. Bean plants, an important legume for human consumption, are often grown in regions with limited rainfall and irrigation and are therefore bred to further enhance drought tolerance. We assessed physiological (stomatal conductance and predawn and midday leaf water potential) and ground- and tower-based hyperspectral remote sensing (400 to 2,400 nm and 400 to 900 nm, respectively) measurements to evaluate drought response in 12 common bean and 4 tepary bean genotypes across 3 field campaigns (1 predrought and 2 post-drought). Hyperspectral data in partial least squares regression models predicted these physiological traits (R 2 = 0.20 to 0.55; root mean square percent error 16% to 31%). Furthermore, ground-based partial least squares regression models successfully ranked genotypic drought responses similar to the physiologically based ranks. This study demonstrates applications of high-resolution hyperspectral remote sensing for predicting plant traits and phenotyping drought response across genotypes for vegetation monitoring and breeding population screening.

4.
Nat Commun ; 14(1): 1908, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019898

RESUMO

Domesticated crops have been disseminated by humans over vast geographic areas. Common bean (Phaseolus vulgaris L.) was introduced in Europe after 1492. Here, by combining whole-genome profiling, metabolic fingerprinting and phenotypic characterisation, we show that the first common bean cultigens successfully introduced into Europe were of Andean origin, after Francisco Pizarro's expedition to northern Peru in 1529. We reveal that hybridisation, selection and recombination have shaped the genomic diversity of the European common bean in parallel with political constraints. There is clear evidence of adaptive introgression into the Mesoamerican-derived European genotypes, with 44 Andean introgressed genomic segments shared by more than 90% of European accessions and distributed across all chromosomes except PvChr11. Genomic scans for signatures of selection highlight the role of genes relevant to flowering and environmental adaptation, suggesting that introgression has been crucial for the dissemination of this tropical crop to the temperate regions of Europe.


Assuntos
Phaseolus , Humanos , Phaseolus/genética , Variação Genética , Genótipo , Evolução Biológica , Hibridização Genética
5.
Plant Methods ; 19(1): 29, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978119

RESUMO

BACKGROUND: Remote sensing instruments enable high-throughput phenotyping of plant traits and stress resilience across scale. Spatial (handheld devices, towers, drones, airborne, and satellites) and temporal (continuous or intermittent) tradeoffs can enable or constrain plant science applications. Here, we describe the technical details of TSWIFT (Tower Spectrometer on Wheels for Investigating Frequent Timeseries), a mobile tower-based hyperspectral remote sensing system for continuous monitoring of spectral reflectance across visible-near infrared regions with the capacity to resolve solar-induced fluorescence (SIF). RESULTS: We demonstrate potential applications for monitoring short-term (diurnal) and long-term (seasonal) variation of vegetation for high-throughput phenotyping applications. We deployed TSWIFT in a field experiment of 300 common bean genotypes in two treatments: control (irrigated) and drought (terminal drought). We evaluated the normalized difference vegetation index (NDVI), photochemical reflectance index (PRI), and SIF, as well as the coefficient of variation (CV) across the visible-near infrared spectral range (400 to 900 nm). NDVI tracked structural variation early in the growing season, following initial plant growth and development. PRI and SIF were more dynamic, exhibiting variation diurnally and seasonally, enabling quantification of genotypic variation in physiological response to drought conditions. Beyond vegetation indices, CV of hyperspectral reflectance showed the most variability across genotypes, treatment, and time in the visible and red-edge spectral regions. CONCLUSIONS: TSWIFT enables continuous and automated monitoring of hyperspectral reflectance for assessing variation in plant structure and function at high spatial and temporal resolutions for high-throughput phenotyping. Mobile, tower-based systems like this can provide short- and long-term datasets to assess genotypic and/or management responses to the environment, and ultimately enable the spectral prediction of resource-use efficiency, stress resilience, productivity and yield.

6.
Plant Direct ; 6(12): e470, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36523608

RESUMO

The production of the common bean (Phaseolus vulgaris L.), one of the most important sources of protein and minerals and one of the most consumed grain legumes globally, is highly affected by heat and drought constraints. In contrast, the tepary bean (Phaseolus acutifolius A. Gray), a common bean-related species, is adapted to hot and dry climates. Hybridization to introduce complex traits from the tepary bean into the common bean has been challenging, as embryo rescue is required. In this study, we report three novel interspecific lines that were obtained by crossing lines from prior common bean × tepary bean hybridization with Phaseolus parvifolius Freytag in order to increase the male gametic diversity to facilitate interspecific crosses. These interspecific lines enhanced the crossability of the common bean and tepary bean species while avoiding the embryo rescue process. Crossing these three interspecific lines with tepary beans resulted in 12-fold more hybrid plants than crossing traditional common beans with tepary beans. Whole-genome sequencing analysis of these three interspecific lines shows large introgressions of genomic regions corresponding to P. parvifolius on chromosomes that presumably contribute to reproductive barriers between both species. The development of these lines opens up the possibility of increasing the introgression of desirable tepary bean traits into the common bean to address constraints driven by climate change.

7.
Front Genet ; 13: 853114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711938

RESUMO

Common bean (Phaseolus vulgaris) is one of the major legume crops cultivated worldwide. Bacterial wilt (BW) of common bean (Curtobacterium flaccumfaciens pv. flaccumfaciens), being a seed-borne disease, has been a challenge in common bean producing regions. A genome-wide association study (GWAS) was conducted to identify SNP markers associated with BW resistance in the USDA common bean core collection. A total of 168 accessions were evaluated for resistance against three different isolates of BW. Our study identified a total of 14 single nucleotide polymorphism (SNP) markers associated with the resistance to BW isolates 528, 557, and 597 using mixed linear models (MLMs) in BLINK, FarmCPU, GAPIT, and TASSEL 5. These SNPs were located on chromosomes Phaseolus vulgaris [Pv]02, Pv04, Pv08, and Pv09 for isolate 528; Pv07, Pv10, and Pv11 for isolate 557; and Pv04, Pv08, and Pv10 for isolate 597. The genomic prediction accuracy was assessed by utilizing seven GP models with 1) all the 4,568 SNPs and 2) the 14 SNP markers. The overall prediction accuracy (PA) ranged from 0.30 to 0.56 for resistance against the three BW isolates. A total of 14 candidate genes were discovered for BW resistance located on chromosomes Pv02, Pv04, Pv07, Pv08, and Pv09. This study revealed vital information for developing genetic resistance against the BW pathogen in common bean. Accordingly, the identified SNP markers and candidate genes can be utilized in common bean molecular breeding programs to develop novel resistant cultivars.

8.
New Phytol ; 235(6): 2454-2465, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35708662

RESUMO

Fruit development has been central in the evolution and domestication of flowering plants. In common bean (Phaseolus vulgaris), the principal global grain legume staple, two main production categories are distinguished by fibre deposition in pods: dry beans, with fibrous, stringy pods; and stringless snap/green beans, with reduced fibre deposition, which frequently revert to the ancestral stringy state. Here, we identify genetic and developmental patterns associated with pod fibre deposition. Transcriptional, anatomical, epigenetic and genetic regulation of pod strings were explored through RNA-seq, RT-qPCR, fluorescence microscopy, bisulfite sequencing and whole-genome sequencing. Overexpression of the INDEHISCENT ('PvIND') orthologue was observed in stringless types compared with isogenic stringy lines, associated with overspecification of weak dehiscence-zone cells throughout the pod vascular sheath. No differences in DNA methylation were correlated with this phenotype. Nonstringy varieties showed a tandemly direct duplicated PvIND and a Ty1-copia retrotransposon inserted between the two repeats. These sequence features are lost during pod reversion and are predictive of pod phenotype in diverse materials, supporting their role in PvIND overexpression and reversible string phenotype. Our results give insight into reversible gain-of-function mutations and possible genetic solutions to the reversion problem, of considerable economic value for green bean production.


Assuntos
Phaseolus , Domesticação , Duplicação Gênica , Phaseolus/genética , Fenótipo , Retroelementos/genética
9.
Front Plant Sci ; 12: 748829, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691125

RESUMO

The population growth trend in recent decades has resulted in continuing efforts to guarantee food security in which leguminous plants, such as the common bean (Phaseolus vulgaris L.), play a particularly important role as they are relatively cheap and have high nutritional value. To meet this demand for food, the main target for genetic improvement programs is to increase productivity, which is a complex quantitative trait influenced by many component traits. This research aims to identify Quantitative Trait Nucleotides (QTNs) associated with productivity and its components using multi-locus genome-wide association studies. Ten morpho-agronomic traits [plant height (PH), first pod insertion height (FPIH), number of nodules (NN), pod length (PL), total number of pods per plant (NPP), number of locules per pod (LP), number of seeds per pod (SP), total seed weight per plant (TSW), 100-seed weight (W100), and grain yield (YLD)] were evaluated in four environments for 178 Mesoamerican common bean domesticated accessions belonging to the Brazilian Diversity Panel. In order to identify stable QTNs, only those identified by multiple methods (mrMLM, FASTmrMLM, pLARmEB, and ISIS EM-BLASSO) or in multiple environments were selected. Among the identified QTNs, 64 were detected at least thrice by different methods or in different environments, and 39 showed significant phenotypic differences between their corresponding alleles. The alleles that positively increased the corresponding traits, except PH (for which lower values are desired), were considered favorable alleles. The most influenced trait by the accumulation of favorable alleles was PH, showing a 51.7% reduction, while NN, TSW, YLD, FPIH, and NPP increased between 18 and 34%. Identifying QTNs in several environments (four environments and overall adjusted mean) and by multiple methods reinforces the reliability of the associations obtained and the importance of conducting these studies in multiple environments. Using these QTNs through molecular techniques for genetic improvement, such as marker-assisted selection or genomic selection, can be a strategy to increase common bean production.

10.
Plants (Basel) ; 10(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34451617

RESUMO

Abiotic stress is a limiting factor for common bean (Phaseolus vulgaris L.) production globally. The study of the genotypic, phenotypic, and bio-climatic variables in a broad set of accessions may assist the identification of genomic regions involved in the climatic adaptation of the common bean. We conducted a genotyping-by-sequencing analysis using 28,823 SNPs on 110 georeferenced common bean accessions from Brazil to discover associations between SNPs and bio-climatic indexes. The population structure analysis clustered the accessions into two groups corresponding to the Andean and Mesoamerican gene pools. Of the 19 bioclimatic variables, 17 exhibited a significant association with SNPs on chromosomes Pv01, Pv02, Pv03, Pv04, Pv06, Pv09, Pv10, and Pv11 of common bean. Ten candidate genes were associated with specific bio-climatic variables related to temperature and precipitation. The candidate genes associated with this significant Pv09 region encode a Platz transcription factor family protein previously reported to be an essential regulator of drought stress. The SNP markers and candidate genes associated with the bio-climatic variables should be validated in segregating populations for water stress, which could further be used for marker-assisted selection. As a result, bean breeding programs may be able to provide advances in obtaining drought-tolerant cultivars.

11.
Front Plant Sci ; 12: 624156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163495

RESUMO

Soybean cyst nematode (SCN, Heterodera glycines) has become the major yield-limiting biological factor in soybean production. Common bean is also a good host of SCN, and its production is challenged by this emerging pest in many regions such as the upper Midwest USA. The use of host genetic resistance has been the most effective and environmentally friendly method to manage SCN. The objectives of this study were to evaluate the SCN resistance in the USDA common bean core collection and conduct a genome-wide association study (GWAS) of single nucleotide polymorphism (SNP) markers with SCN resistance. A total of 315 accessions of the USDA common bean core collection were evaluated for resistance to SCN HG Type 0 (race 6). The common bean core set was genotyped with the BARCBean6K_3 Infinium BeadChips, consisting of 4,654 SNPs. Results showed that 15 accessions were resistant to SCN with a Female Index (FI) at 4.8 to 9.4, and 62 accessions were moderately resistant (10 < FI < 30) to HG Type 0. The association study showed that 11 SNP markers, located on chromosomes Pv04, 07, 09, and 11, were strongly associated with resistance to HG Type 0. GWAS was also conducted for resistance to HG Type 2.5.7 and HG Type 1.2.3.5.6.7 based on the public dataset (N = 276), consisting of a diverse set of common bean accessions genotyped with the BARCBean6K_3 chip. Six SNPs associated with HG Type 2.5.7 resistance on Pv 01, 02, 03, and 07, and 12 SNPs with HG Type 1.2.3.5.6.7 resistance on Pv 01, 03, 06, 07, 09, 10, and 11 were detected. The accuracy of genomic prediction (GP) was 0.36 to 0.49 for resistance to the three SCN HG types, indicating that genomic selection (GS) of SCN resistance is feasible. This study provides basic information for developing SCN-resistant common bean cultivars, using the USDA core germ plasm accessions. The SNP markers can be used in molecular breeding in common beans through marker-assisted selection (MAS) and GS.

12.
J Exp Bot ; 72(18): 6219-6229, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34106233

RESUMO

Pod shattering, which causes the explosive release of seeds from the pod, is one of the main sources of yield losses in cowpea in arid and semi-arid areas. Reduction of shattering has therefore been a primary target for selection during domestication and improvement of cowpea, among other species. Using a mini-core diversity panel of 368 cowpea accessions, four regions with a statistically significant association with pod shattering were identified. Two genes (Vigun03g321100 and Vigun11g100600), involved in cell wall biosynthesis, were identified as strong candidates for pod shattering. Microscopic analysis was conducted on a subset of accessions representing the full spectrum of shattering phenotypes. This analysis indicated that the extent of wall fiber deposition was highly correlated with shattering. The results from this study also demonstrate that pod shattering in cowpea is exacerbated by arid environmental conditions. Finally, using a subset of West African landraces, patterns of historical selection for shattering resistance related to precipitation in the environment of origin were identified. Together, these results shed light on sources of resistance to pod shattering, which will, in turn, improve climate resilience of a major global nutritional staple.


Assuntos
Vigna , Domesticação , Fenótipo , Sementes/genética , Vigna/genética
13.
Theor Appl Genet ; 134(9): 2795-2811, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34027567

RESUMO

KEY MESSAGE: QTNs significantly associated to nine mineral content in grains of common bean were identified. The accumulation of favorable alleles was associated with a gradually increasing nutrient content in the grain. Biofortification is one of the strategies developed to address malnutrition in developing countries, the aim of which is to improve the nutritional content of crops. The common bean (Phaseolus vulgaris L.), a staple food in several African and Latin American countries, has excellent nutritional attributes and is considered a strong candidate for biofortification. The objective of this study was to identify genomic regions associated with nutritional content in common bean grains using 178 Mesoamerican accessions belonging to a Brazilian Diversity Panel (BDP) and 25,011 good-quality single nucleotide polymorphisms. The BDP was phenotyped in three environments for nine nutrients (phosphorus, potassium, calcium, magnesium, copper, manganese, sulfur, zinc, and iron) using four genome-wide association multi-locus methods. To obtain more accurate results, only quantitative trait nucleotides (QTNs) that showed repeatability (i.e., those detected at least twice using different methods or environments) were considered. Forty-eight QTNs detected for the nine minerals showed repeatability and were considered reliable. Pleiotropic QTNs and overlapping genomic regions surrounding the QTNs were identified, demonstrating the possible association between the deposition mechanisms of different nutrients in grains. The accumulation of favorable alleles in the same accession was associated with a gradually increasing nutrient content in the grain. The BDP proved to be a valuable source for association studies. The investigation of different methods and environments showed the reliability of markers associated with minerals. The loci identified in this study will potentially contribute to the improvement of Mesoamerican common beans, particularly carioca and black beans, the main groups consumed in Brazil.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta , Minerais/metabolismo , Phaseolus/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Brasil , Mapeamento Cromossômico/métodos , Estudo de Associação Genômica Ampla , Minerais/análise , Phaseolus/genética , Phaseolus/crescimento & desenvolvimento
14.
Plant Dis ; 105(12): 3939-3945, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33988467

RESUMO

Colletotrichum lindemuthianum, the causal pathogen of common bean (Phaseolus vulgaris) anthracnose, is highly variable. Therefore, understanding its race structure and identification of new sources of resistance is necessary for the development of varieties with durable resistance. The objectives of this study were (i) to characterize isolates of C. lindemuthianum collected from three major bean-growing regions in Zambia and (ii) evaluate the International Center for Tropical Agriculture (CIAT) Phaseolus core collection for resistance to C. lindemuthianum races 37, 73, and 566 and a blend of 20 races. Isolates collected from three major bean-growing districts in Zambia, namely Mporokoso, Mpika, and Mbala, were characterized as races 37, 73, and 566, respectively. A subset of the CIAT core collection comprising 885 accessions of common bean, 13 accessions of scarlet runner bean (Phaseolus coccineus), and 11 accessions of year bean (Phaseolus dumosus) was evaluated for resistance to races 37, 73, and 566 and a blend of 20 races in a greenhouse at the University of Zambia, Lusaka, Zambia. Totals of 72, 66, 48, and 9% of P. vulgaris accessions evaluated were highly resistant to races 37, 73, and 566 and a blend of 20 races, respectively. Also, accessions of P. coccineus and P. dumosus highly resistant to races 37, 73, and 566 were identified. Only eight of the 331 P. vulgaris accessions were highly resistant to all three individual races (37, 73, and 566) and to a blend of 20 races. These eight accessions constitute a valuable breeding resource for developing varieties with durable resistance to C. lindemuthianum.


Assuntos
Phaseolus , Agricultura , Colletotrichum , Doenças das Plantas , Zâmbia
15.
Plant Cell ; 33(2): 179-199, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33793864

RESUMO

A reduction in pod shattering is one of the main components of grain legume domestication. Despite this, many domesticated legumes suffer serious yield losses due to shattering, particularly under arid conditions. Mutations related to pod shattering modify the twisting force of pod walls or the structural strength of the dehiscence zone in pod sutures. At a molecular level, a growing body of evidence indicates that these changes are controlled by a relatively small number of key genes that have been selected in parallel across grain legume species, supporting partial molecular convergence. Legume homologs of Arabidopsis thaliana silique shattering genes play only minor roles in legume pod shattering. Most domesticated grain legume species contain multiple shattering-resistance genes, with mutants of each gene typically showing only partial shattering resistance. Hence, crosses between varieties with different genes lead to transgressive segregation of shattering alleles, producing plants with either enhanced shattering resistance or atavistic susceptibility to the trait. The frequency of these resistance pod-shattering alleles is often positively correlated with environmental aridity. The continued development of pod-shattering-related functional information will be vital for breeding crops that are suited to the increasingly arid conditions expected in the coming decades.


Assuntos
Meio Ambiente , Fabaceae/genética , Sementes/genética , Arabidopsis/genética , Evolução Biológica , Genes de Plantas , Estações do Ano
16.
Sci Rep ; 11(1): 2964, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536468

RESUMO

Brazil is the world's largest producer of common bean. Knowledge of the genetic diversity and relatedness of accessions adapted to Brazilian conditions is of great importance for the conservation of germplasm and for directing breeding programs aimed at the development of new cultivars. In this context, the objective of this study was to analyze the genetic diversity, population structure, and linkage disequilibrium (LD) of a diversity panel consisting of 219 common bean accessions, most of which belonging to the Mesoamerican gene pool. Genotyping by sequencing (GBS) of these accessions allowed the identification of 49,817 SNPs with minor allele frequency > 0.05. Of these, 17,149 and 12,876 were exclusive to the Mesoamerican and Andean pools, respectively, and 11,805 SNPs could differentiate the two gene pools. Further the separation according to the gene pool, bayesian analysis of the population structure showed a subdivision of the Mesoamerican accessions based on the origin and color of the seed tegument. LD analysis revealed the occurrence of long linkage blocks and low LD decay with physical distance between SNPs (LD half decay in 249 kb, corrected for population structure and relatedness). The GBS technique could effectively characterize the Brazilian common bean germplasms, and the diversity panel used in this study may be of great use in future genome-wide association studies.


Assuntos
Genoma de Planta , Phaseolus/genética , Melhoramento Vegetal/métodos , Seleção Genética , Brasil , DNA de Plantas , Domesticação , Frequência do Gene , Pool Gênico , Variação Genética , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único
17.
Nat Commun ; 12(1): 702, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514713

RESUMO

Lima bean (Phaseolus lunatus L.), one of the five domesticated Phaseolus bean crops, shows a wide range of ecological adaptations along its distribution range from Mexico to Argentina. These adaptations make it a promising crop for improving food security under predicted scenarios of climate change in Latin America and elsewhere. In this work, we combine long and short read sequencing technologies with a dense genetic map from a biparental population to obtain the chromosome-level genome assembly for Lima bean. Annotation of 28,326 gene models show high diversity among 1917 genes with conserved domains related to disease resistance. Structural comparison across 22,180 orthologs with common bean reveals high genome synteny and five large intrachromosomal rearrangements. Population genomic analyses show that wild Lima bean is organized into six clusters with mostly non-overlapping distributions and that Mesomerican landraces can be further subdivided into three subclusters. RNA-seq data reveal 4275 differentially expressed genes, which can be related to pod dehiscence and seed development. We expect the resources presented here to serve as a solid basis to achieve a comprehensive view of the degree of convergent evolution of Phaseolus species under domestication and provide tools and information for breeding for climate change resiliency.


Assuntos
Aclimatação/genética , Produtos Agrícolas/genética , Phaseolus/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Argentina , Mapeamento Cromossômico , Mudança Climática , Domesticação , Genes de Plantas/genética , México , Dispersão Vegetal , RNA-Seq , Sementes , Sintenia
18.
Plant J ; 105(6): 1521-1533, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33300202

RESUMO

The common-bean (Phaseolus vulgaris), a widely consumed legume, originated in Mesoamerica and expanded to South America, resulting in the development of two geographically distinct gene pools. Poor soil condition, including metal toxicity, are often constraints to common-bean crop production. Several P. vulgaris miRNAs, including miR1511, respond to metal toxicity. The MIR1511 gene sequence from the two P. vulgaris model sequenced genotypes revealed that, as opposed to BAT93 (Mesoamerican), the G19833 (Andean) accession displays a 58-bp deletion, comprising the mature and star miR1511 sequences. Genotyping-By-Sequencing data analysis from 87 non-admixed Phaseolus genotypes, comprising different Phaseolus species and P. vulgaris populations, revealed that all the P. vulgaris Andean genotypes and part of the Mesoamerican (MW1) genotypes analyzed displayed a truncated MIR1511 gene. The geographic origin of genotypes with a complete versus truncated MIR1511 showed a distinct distribution. The P. vulgaris ALS3 (Aluminum Sensitive Protein 3) gene, known to be important for aluminum detoxification in several plants, was experimentally validated as the miR1511 target. Roots from BAT93 plants showed decreased miR1511 and increased ALS3 transcript levels at early stages under aluminum toxicity (AlT), while G19833 plants, lacking mature miR1511, showed higher and earlier ALS3 response. Root architecture analyses evidenced higher tolerance of G19833 plants to AlT. However, G19833 plants engineered for miR1511 overexpression showed lower ALS3 transcript level and increased sensitivity to AlT. Absence of miR1511 in Andean genotypes, resulting in a diminished ALS3 transcript degradation, appears to be an evolutionary advantage to high Al levels in soils with increased drought conditions.


Assuntos
Alumínio/toxicidade , MicroRNAs/genética , Phaseolus/genética , RNA de Plantas/genética , Deleção de Genes , Variação Genética , MicroRNAs/metabolismo , Phaseolus/efeitos dos fármacos , Phaseolus/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , RNA de Plantas/metabolismo , Estresse Fisiológico
19.
Theor Appl Genet ; 134(1): 313-325, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33130953

RESUMO

KEY MESSAGE: A common bean shattering-resistance allele of PvPdh1 reduces pod twists during dehiscence, shows dominance that varies by phenotyping method, is part of a selective sweep, and can be introgressed using CAPS markers. Some varieties of common bean (Phaseolus vulgaris L.) suffer from pod shattering, which can severely reduce yields, especially in arid conditions. The PvPdh1 locus on chromosome Pv03 has recently been described as a major locus controlling pod shattering in common bean and could be used to mitigate pod shattering in the future. Despite this, the role of a possible second locus on chromosome Pv08 remains unclear and patterns of dominance and epistasis between alleles of these genes have not been resolved. This information will be vital for efficient selection to decrease pod shattering. Further, the genetic diversity around the PvPdh1 gene has not yet been thoroughly explored, and there are not yet genetic screens that can be used to evaluate pod shattering in segregating populations. Here, we have developed a recombinant inbred population to determine the roles of genes implicated in pod shattering and evaluate the patterns of dominance among the relevant alleles. Our results suggest that a PvPdh1 allele reduces pod valve twisting, and its dominance varies by phenotyping method. This allele is the only genetic variant that provides environmentally stable and widespread resistance to pod shattering in Middle American common beans grown for grain. Further analyses identified a selective sweep around PvPdh1 with greater nucleotide diversity in individuals with the ancestral, shattering-susceptible allele. Finally, we developed simple, effective CAPS markers to facilitate the introgression of PvPdh1 into new varieties of common bean. These genetic resources will be critical for improving the aridity resilience of a major global staple.


Assuntos
Genes de Plantas , Introgressão Genética , Phaseolus/genética , Alelos , Genes Dominantes , Marcadores Genéticos , Genótipo , Phaseolus/crescimento & desenvolvimento , Fenótipo , Melhoramento Vegetal
20.
Front Plant Sci ; 11: 346, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308660

RESUMO

Genetic analyses and utilization of wild genetic variation for crop improvement in common bean (Phaseolus vulgaris L.) have been hampered by yield evaluation difficulties, identification of advantageous variation, and linkage drag. The lack of adaptation to cultivation conditions and the existence of highly structured populations make association mapping of diversity panels not optimal. Joint linkage mapping of nested populations avoids the later constraint, while populations crossed with a common domesticated parent allow the evaluation of wild variation within a more adapted background. Three domesticated by wild backcrossed-inbred-line populations (BC1S4) were developed using three wild accessions representing the full range of rainfall of the Mesoamerican wild bean distribution crossed to the elite drought tolerant domesticated parent SEA 5. These populations were evaluated under field conditions in three environments, two fully irrigated trials in two seasons and a simulated terminal drought in the second season. The goal was to test if these populations responded differently to drought stress and contained progenies with higher yield than SEA 5, not only under drought but also under water-watered conditions. Results revealed that the two populations derived from wild parents of the lower rainfall regions produced lines with higher yield compared to the domesticated parent in the three environments, i.e., both in the drought-stressed environment and in the well-watered treatments. Several progeny lines produced yields, which on average over the three environments were 20% higher than the SEA 5 yield. Twenty QTLs for yield were identified in 13 unique regions on eight of the 11 chromosomes of common bean. Five of these regions showed at least one wild allele that increased yield over the domesticated parent. The variation explained by these QTLs ranged from 0.6 to 5.4% of the total variation and the additive effects ranged from -164 to 277 kg ha-1, with evidence suggesting allelic series for some QTLs. Our results underscore the potential of wild variation, especially from drought-stressed regions, for bean crop improvement as well the identification of regions for efficient marker-assisted introgression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...