Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(29): E2918-27, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002506

RESUMO

The Ras/MAPK signaling cascade regulates various biological functions, including cell growth and proliferation. As such, this pathway is frequently deregulated in several types of cancer, including most cases of melanoma. RSK (p90 ribosomal S6 kinase) is a MAPK-activated protein kinase required for melanoma growth and proliferation, but relatively little is known about its exact function and the nature of its substrates. Herein, we used a quantitative phosphoproteomics approach to define the signaling networks regulated by RSK in melanoma. To more accurately predict direct phosphorylation substrates, we defined the RSK consensus phosphorylation motif and found significant overlap with the binding consensus of 14-3-3 proteins. We thus characterized the phospho-dependent 14-3-3 interactome in melanoma cells and found that a large proportion of 14-3-3 binding proteins are also potential RSK substrates. Our results show that RSK phosphorylates the tumor suppressor PDCD4 (programmed cell death protein 4) on two serine residues (Ser76 and Ser457) that regulate its subcellular localization and interaction with 14-3-3 proteins. We found that 14-3-3 binding promotes PDCD4 degradation, suggesting an important role for RSK in the inactivation of PDCD4 in melanoma. In addition to this tumor suppressor, our results suggest the involvement of RSK in a vast array of unexplored biological functions with relevance in oncogenesis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Fosfoproteínas/metabolismo , Proteômica/métodos , Proteínas de Ligação a RNA/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas 14-3-3/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Linhagem Celular , Núcleo Celular/metabolismo , Sequência Consenso , Humanos , Melanoma/metabolismo , Melanoma/patologia , Modelos Biológicos , Dados de Sequência Molecular , Biblioteca de Peptídeos , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Transporte Proteico , Proteólise , Proteoma/metabolismo , Especificidade por Substrato
2.
Mol Cell Proteomics ; 10(10): M110.005751, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21725060

RESUMO

Hundreds of candidate 14-3-3-binding (phospho)proteins have been reported in publications that describe one interaction at a time, as well as high-throughput 14-3-3-affinity and mass spectrometry-based studies. Here, we transcribed these data into a common format, deposited the collated data from low-throughput studies in MINT (http://mint.bio.uniroma2.it/mint), and compared the low- and high-throughput data in VisANT graphs that are easy to analyze and extend. Exploring the graphs prompted questions about technical and biological specificity, which were addressed experimentally, resulting in identification of phosphorylated 14-3-3-binding sites in the mitochondrial import sequence of the iron-sulfur cluster assembly enzyme (ISCU), cytoplasmic domains of the mitochondrial fission factor (MFF), and endoplasmic reticulum-tethered receptor expression-enhancing protein 4 (REEP4), RNA regulator SMAUG2, and cytoskeletal regulatory proteins, namely debrin-like protein (DBNL) and kinesin light chain (KLC) isoforms. Therefore, 14-3-3s undergo physiological interactions with proteins that are destined for diverse subcellular locations. Graphing and validating interactions underpins efforts to use 14-3-3-phosphoproteomics to identify mechanisms and biomarkers for signaling pathways in health and disease.


Assuntos
Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Mitocôndrias/metabolismo , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Animais , Sítios de Ligação/genética , Biomarcadores/metabolismo , Bases de Dados de Proteínas , Células HEK293 , Humanos , Espectrometria de Massas , Camundongos , Mitocôndrias/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais
3.
Mol Cell Proteomics ; 8(11): 2487-99, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19648646

RESUMO

We devised a strategy of 14-3-3 affinity capture and release, isotope differential (d(0)/d(4)) dimethyl labeling of tryptic digests, and phosphopeptide characterization to identify novel targets of insulin/IGF1/phosphatidylinositol 3-kinase signaling. Notably four known insulin-regulated proteins (PFK-2, PRAS40, AS160, and MYO1C) had high d(0)/d(4) values meaning that they were more highly represented among 14-3-3-binding proteins from insulin-stimulated than unstimulated cells. Among novel candidates, insulin receptor substrate 2, the proapoptotic CCDC6, E3 ubiquitin ligase ZNRF2, and signaling adapter SASH1 were confirmed to bind to 14-3-3s in response to IGF1/phosphatidylinositol 3-kinase signaling. Insulin receptor substrate 2, ZNRF2, and SASH1 were also regulated by phorbol ester via p90RSK, whereas CCDC6 and PRAS40 were not. In contrast, the actin-associated protein vasodilator-stimulated phosphoprotein and lipolysis-stimulated lipoprotein receptor, which had low d(0)/d(4) scores, bound 14-3-3s irrespective of IGF1 and phorbol ester. Phosphorylated Ser(19) of ZNRF2 (RTRAYpS(19)GS), phospho-Ser(90) of SASH1 (RKRRVpS(90)QD), and phospho- Ser(493) of lipolysis-stimulated lipoprotein receptor (RPRARpS(493)LD) provide one of the 14-3-3-binding sites on each of these proteins. Differential 14-3-3 capture provides a powerful approach to defining downstream regulatory mechanisms for specific signaling pathways.


Assuntos
Proteínas 14-3-3/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteômica/métodos , Actinas/química , Apoptose , Sítios de Ligação , Cromatografia Líquida/métodos , Células HeLa , Humanos , Espectrometria de Massas/métodos , Modelos Biológicos , Peptídeos/química , Proteoma , Transdução de Sinais , Tripsina/química
4.
Biochem J ; 407(2): 231-41, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17617058

RESUMO

AS160 (Akt substrate of 160 kDa) mediates insulin-stimulated GLUT4 (glucose transporter 4) translocation, but is widely expressed in insulin-insensitive tissues lacking GLUT4. Having isolated AS160 by 14-3-3-affinity chromatography, we found that binding of AS160 to 14-3-3 isoforms in HEK (human embryonic kidney)-293 cells was induced by IGF-1 (insulin-like growth factor-1), EGF (epidermal growth factor), PMA and, to a lesser extent, AICAR (5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside). AS160-14-3-3 interactions were stabilized by chemical cross-linking and abolished by dephosphorylation. Eight residues on AS160 (Ser318, Ser341, Thr568, Ser570, Ser588, Thr642, Ser666 and Ser751) were differentially phosphorylated in response to IGF-1, EGF, PMA and AICAR. The binding of 14-3-3 proteins to HA-AS160 (where HA is haemagglutinin) was markedly decreased by mutation of Thr642 and abolished in a Thr642Ala/Ser341Ala double mutant. The AGC (protein kinase A/protein kinase G/protein kinase C-family) kinases RSK1 (p90 ribosomal S6 kinase 1), SGK1 (serum- and glucocorticoid-induced protein kinase 1) and PKB (protein kinase B) displayed distinct signatures of AS160 phosphorylation in vitro: all three kinases phosphorylated Ser318, Ser588 and Thr642; RSK1 also phosphorylated Ser341, Ser751 and to a lesser extent Thr568; and SGK1 phosphorylated Thr568 and Ser751. AMPK (AMP-activated protein kinase) preferentially phosphorylated Ser588, with less phosphorylation of other sites. In cells, the IGF-1-stimulated phosphorylations, and certain EGF-stimulated phosphorylations, were inhibited by PI3K (phosphoinositide 3-kinase) inhibitors, whereas the RSK inhibitor BI-D1870 inhibited the PMA-induced phosphorylations. The expression of LKB1 in HeLa cells and the use of AICAR in HEK-293 cells promoted phosphorylation of Ser588, but only weak Ser341 and Thr642 phosphorylations and binding to 14-3-3s. Paradoxically however, phenformin activated AMPK without promoting AS160 phosphorylation. The IGF-1-induced phosphorylation of the novel phosphorylated Ser666-Pro site was suppressed by AICAR, and by combined mutation of a TOS (mTOR signalling)-like sequence (FEMDI) and rapamycin. Thus, although AS160 is a common target of insulin, IGF-1, EGF, PMA and AICAR, these stimuli induce distinctive patterns of phosphorylation and 14-3-3 binding, mediated by at least four protein kinases.


Assuntos
Proteínas 14-3-3/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Fator de Crescimento Epidérmico/farmacologia , Proteínas Ativadoras de GTPase/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Ribonucleotídeos/farmacologia , Aminoácidos , Aminoimidazol Carboxamida/farmacologia , Sítios de Ligação , Linhagem Celular , Humanos , Hipoglicemiantes/farmacologia , Insulina , Fosforilação , Ligação Proteica
5.
Biochem J ; 379(Pt 2): 395-408, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-14744259

RESUMO

14-3-3-interacting proteins were isolated from extracts of proliferating HeLa cells using 14-3-3 affinity chromatography, eluting with a phosphopeptide that competes with targets for 14-3-3 binding. The isolated proteins did not bind to 14-3-3 proteins (14-3-3s) after dephosphorylation with protein phosphatase 2A (PP2A), indicating that binding to 14-3-3s requires their phosphorylation. The binding proteins identified by tryptic mass fingerprinting and Western blotting include many enzymes involved in generating precursors such as purines (AMP, GMP and ATP), FAD, NADPH, cysteine and S-adenosylmethionine, which are needed for cell growth, regulators of cell proliferation, including enzymes of DNA replication, proteins of anti-oxidative metabolism, regulators of actin dynamics and cellular trafficking, and proteins whose deregulation has been implicated in cancers, diabetes, Parkinsonism and other neurological diseases. Several proteins bound to 14-3-3-Sepharose in extracts of proliferating cells, but not in non-proliferating, serum-starved cells, including a novel microtubule-interacting protein ELP95 (EMAP-like protein of 95 kDa) and a small HVA22/Yop1p-related protein. In contrast, the interactions of 14-3-3s with the N-methyl-D-aspartate receptor 2A subunit and NuMA (nuclear mitotic apparatus protein) were not regulated by serum. Overall, our findings suggest that 14-3-3s may be central to integrating the regulation of biosynthetic metabolism, cell proliferation, survival, and other processes in human cells.


Assuntos
Fosfoproteínas/isolamento & purificação , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas 14-3-3 , Ligação Competitiva , Western Blotting , Divisão Celular , Cromatografia de Afinidade , Enzimas/isolamento & purificação , Células HeLa , Humanos , Toxinas Marinhas , Metabolismo , Proteínas Associadas aos Microtúbulos/isolamento & purificação , Oxazóis/farmacologia , Mapeamento de Peptídeos , Fosfopeptídeos/metabolismo , Fosfoproteínas/análise , Transporte Proteico , Tirosina 3-Mono-Oxigenase/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...