Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 15(6): 773-780, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37277648

RESUMO

Aptamers are being applied as affinity reagents in analytical applications owing to their high stability, compact size and amenability to chemical modification. Generating aptamers with different binding affinities is desirable, but systematic evolution of ligands by exponential enrichment (SELEX), the standard for aptamer generation, is unable to quantitatively produce aptamers with desired binding affinities and requires multiple rounds of selection to eliminate false-positive hits. Here we introduce Pro-SELEX, an approach for the rapid discovery of aptamers with precisely defined binding affinities that combines efficient particle display, high-performance microfluidic sorting and high-content bioinformatics. Using the Pro-SELEX workflow, we were able to investigate the binding performance of individual aptamer candidates under different selective pressures in a single round of selection. Using human myeloperoxidase as a target, we demonstrate that aptamers with dissociation constants spanning a 20-fold range of affinities can be identified within one round of Pro-SELEX.


Assuntos
Aptâmeros de Nucleotídeos , Microfluídica , Humanos , Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros/métodos , Ligantes
2.
Angew Chem Int Ed Engl ; 62(20): e202213567, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36894506

RESUMO

Reagent-free electronic biosensors capable of analyzing disease markers directly in unprocessed body fluids will enable the development of simple & affordable devices for personalized healthcare monitoring. Here we report a powerful and versatile nucleic acid-based reagent-free electronic sensing system. The signal transduction is based on the kinetics of an electrode-tethered molecular pendulum-a rigid double stranded DNA with one of the strands displaying an analyte-binding aptamer and the other featuring a redox probe-that exhibits field-induced transport modulated by receptor occupancy. Using chronoamperometry, which enables the sensor to circumvent the conventional Debye length limitation, the binding of an analyte can be monitored as these species increase the hydrodynamic drag. The sensing platform demonstrates a low femtomolar quantification limit and minimal cross-reactivity in analyzing cardiac biomarkers in whole blood collected from patients with chronic heart failure.


Assuntos
Aptâmeros de Nucleotídeos , Ácidos Nucleicos , Humanos , Aptâmeros de Nucleotídeos/química , DNA/química , Eletrodos , Biomarcadores
3.
Biofabrication ; 12(4): 045007, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32464609

RESUMO

Oral tablets with tunable release profiles have emerged to enhance the effectiveness of therapies in different clinical conditions. Although the concept of tablets with adjustable release profiles has been studied before, the lack of a fast and scalable production technique has limited their widespread application. In this study, a scalable fabrication method was developed to manufacture controlled-release polyanhydride tablets. A new polymeric core-shell tablet design is also proposed, that in conjunction with a micro-fabrication procedure, allows for achieving tunable release profiles required in personalized medicine in small-size tablets. Utilizing a surface-erodible polymeric carrier in the fabrication of the new tablet design resulted in achieving adjustable release profiles and improvements in the drug-loading capacity of the delivery system which allows for delivering a flexible amount of therapeutics with desirable patterns to patients. The proposed fabrication techniques allow for scalable production of personalized tablets with the high resolution required in precision medicine and hence have a high potential for clinical translation.


Assuntos
Liberação Controlada de Fármacos , Microtecnologia , Polímeros/química , Dimetilpolisiloxanos/química , Sistemas de Liberação de Medicamentos , Comprimidos
4.
Polymers (Basel) ; 12(5)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408683

RESUMO

Photocrosslinkable polyanhydrides that undergo surface erosion are suitable materials for controlled-release drug delivery systems. Investigating the impact of different parameters on their erosion behavior is essential before use in drug delivery systems. Although their synthesis is well-established, parameters that may substantially affect the erosion of thiol-ene polyanhydrides including temperature and pH of the media, the geometry of the polymers, and the media shaking rate (the convective force for the polymer erosion), have not yet been studied. This study explores the effects of different environmental and geometric parameters on mass loss (erosion) profiles of polyanhydrides synthesized by thiol-ene photopolymerization. A comparative study on several release kinetic models fitting is also described for a better understanding of the polymer erosion behavior. The results demonstrated that although the temperature was the only parameter that affected the induction period substantially, the mass-loss rate was influenced by the polymer composition, tablet geometry, temperature, pH, and mass transfer (shaking) rate. With regard to geometrical parameters, polymers with the same surface area to volume ratios showed similar mass loss trends despite their various volumes and surface areas. The mass loss of polyanhydride tablets with more complicated geometries than a simple slab was shown to be non-linear, and the kinetic model study indicated the dominant surface erosion mechanism. The results of this study allow for designing and manufacturing efficient delivery systems with a high-predictable drug release required in precision medicine using surface-erodible polyanhydrides.

5.
Adv Healthc Mater ; 7(2)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28910516

RESUMO

Organ-on-chip (OOC) platforms have attracted attentions of pharmaceutical companies as powerful tools for screening of existing drugs and development of new drug candidates. OOCs have primarily used human cell lines or primary cells to develop biomimetic tissue models. However, the ability of human stem cells in unlimited self-renewal and differentiation into multiple lineages has made them attractive for OOCs. The microfluidic technology has enabled precise control of stem cell differentiation using soluble factors, biophysical cues, and electromagnetic signals. This study discusses different tissue- and organ-on-chip platforms (i.e., skin, brain, blood-brain barrier, bone marrow, heart, liver, lung, tumor, and vascular), with an emphasis on the critical role of stem cells in the synthesis of complex tissues. This study further recaps the design, fabrication, high-throughput performance, and improved functionality of stem-cell-based OOCs, technical challenges, obstacles against implementing their potential applications, and future perspectives related to different experimental platforms.


Assuntos
Dispositivos Lab-On-A-Chip , Células-Tronco/citologia , Animais , Materiais Biocompatíveis , Humanos , Microfluídica/métodos , Engenharia Tecidual/métodos
6.
Adv Healthc Mater ; 5(19): 2459-2480, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27548388

RESUMO

In recent years, both tissue engineering and microfluidics have significantly contributed in engineering of in vitro skin substitutes to test the penetration of chemicals or to replace damaged skins. Organ-on-chip platforms have been recently inspired by the integration of microfluidics and biomaterials in order to develop physiologically relevant disease models. However, the application of organ-on-chip on the development of skin disease models is still limited and needs to be further developed. The impact of tissue engineering, biomaterials and microfluidic platforms on the development of skin grafts and biomimetic in vitro skin models is reviewed. The integration of tissue engineering and microfluidics for the development of biomimetic skin-on-chip platforms is further discussed, not only to improve the performance of present skin models, but also for the development of novel skin disease platforms for drug screening processes.


Assuntos
Dermatopatias/fisiopatologia , Dermatopatias/terapia , Animais , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Biomimética/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Modelos Biológicos , Dermatopatias/tratamento farmacológico , Engenharia Tecidual/métodos
7.
Micromachines (Basel) ; 7(9)2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-30404334

RESUMO

Development of predictive multi-organ models before implementing costly clinical trials is central for screening the toxicity, efficacy, and side effects of new therapeutic agents. Despite significant efforts that have been recently made to develop biomimetic in vitro tissue models, the clinical application of such platforms is still far from reality. Recent advances in physiologically-based pharmacokinetic and pharmacodynamic (PBPK-PD) modeling, micro- and nanotechnology, and in silico modeling have enabled single- and multi-organ platforms for investigation of new chemical agents and tissue-tissue interactions. This review provides an overview of the principles of designing microfluidic-based organ-on-chip models for drug testing and highlights current state-of-the-art in developing predictive multi-organ models for studying the cross-talk of interconnected organs. We further discuss the challenges associated with establishing a predictive body-on-chip (BOC) model such as the scaling, cell types, the common medium, and principles of the study design for characterizing the interaction of drugs with multiple targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...