Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.659
Filtrar
3.
ACS Appl Mater Interfaces ; 16(20): 25773-25787, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739686

RESUMO

Patients diagnosed with advanced prostate cancer (PCa) often experience incurable bone metastases; however, a lack of relevant experimental models has hampered the study of disease mechanisms and the development of therapeutic strategies. In this study, we employed the recently established Temperature-based Easy-separable (TempEasy) 3D cell coculture system to investigate PCa bone metastasis. Through coculturing PCa and bone cells for 7 days, our results showed a reduction in PCa cell proliferation, an increase in neovascularization, and an enhanced metastasis potential when cocultured with bone cells. Additionally, we observed increased cell proliferation, higher stemness, and decreased bone matrix protein expression in bone cells when cocultured with PCa cells. Furthermore, we demonstrated that the stiffness of the extracellular matrix had a negligible impact on molecular responses in both primary (PCa cells) and distant malignant (bone cells) sites. The TempEasy 3D hydrogel coculture system is an easy-to-use and versatile coculture system that provides valuable insights into the mechanisms of cell-cell communication and interaction in cancer metastasis.


Assuntos
Neoplasias Ósseas , Proliferação de Células , Técnicas de Cocultura , Hidrogéis , Neoplasias da Próstata , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Humanos , Masculino , Neoplasias Ósseas/secundário , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Hidrogéis/química , Linhagem Celular Tumoral , Animais
4.
Curr Biol ; 34(9): R337-R339, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38714158

RESUMO

Nociceptive stimuli are processed by the brain into an unpleasant sensation. Two new studies highlight an important role of the claustrum in the processing of pain-related information.


Assuntos
Dor Crônica , Claustrum , Dor Crônica/fisiopatologia , Claustrum/fisiologia , Humanos , Animais
5.
Ther Adv Med Oncol ; 16: 17588359241230756, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559612

RESUMO

Due to the fact biliary tract cancer (BTC) is often diagnosed at an advanced stage, thus, not eligible for resection, and due to the aggressive tumor biology, it is considered as one of the cancer types with the worst prognosis. Advances in diagnosis, surgical techniques, and molecular characterization have led to an improvement of the prognosis of BTC patients, recently. Although neoadjuvant therapy is expected to improve surgical outcomes by reducing tumor size, its routine is not well established. The application of neoadjuvant therapy in locally advanced disease may be indicated, the routine use of systemic therapy prior to surgery for cholangiocarcinoma patients with an upfront resectable disease is less well established, but discussed and performed in selected cases. In advanced disease, only combination chemotherapy regimens have been demonstrated to achieve disease control in untreated patients. Molecular profiling of the tumor has demonstrated that many BTC might bear actionable targets, which might be addressed by biological treatments, thus improving the prognosis of the patients. Furthermore, the addition of the immunotherapy to standard chemotherapy might improve the prognosis in a subset of patients. This review seeks to give a comprehensive overview about the role of neoadjuvant as well as palliative systemic treatment approaches and an outlook about novel systemic treatment concept in BTC.

6.
J Clin Tuberc Other Mycobact Dis ; 35: 100435, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38601919

RESUMO

Antimicrobial resistance alongside other challenges in tuberculosis (TB) therapeutics have stirred renewed interest in host-directed interventions, including the role of antibodies as adjunct therapeutic agents. This study assessed the binding efficacy of two novel IgG1 opsonic monoclonal antibodies (MABs; GG9 & JG7) at 5, 10, and 25 µg/mL to live cultures of Mycobacterium tuberculosis, M. avium, M. bovis, M. fortuitum, M. intracellulare, and M. smegmatis American Type Culture Collection laboratory reference strains, as well as clinical susceptible, multi-drug resistant, and extensively drug resistant M. tuberculosis strains using indirect enzyme-linked immunosorbent assays. These three MAB concentrations were selected from a range of concentrations used in previous optimization (binding and functional) assays. Both MABs bound to all mycobacterial species and sub-types tested, albeit to varying degrees. Statistically significant differences in MAB binding activity were observed when comparing the highest and lowest MAB concentrations (p < 0.05) for both MABs GG9 and JG7, irrespective of the M. tuberculosis resistance profile. Binding affinity increased with an increase in MAB concentration, and optimal binding was observed at 25 µg/mL. JG7 showed better binding activity than GG9. Both MABs also bound to five MOTT species, albeit at varied levels. This non-selective binding to different mycobacterial species suggests a potential role for GG9 and JG7 as adjunctive agents in anti-TB chemotherapy with the aim to enhance bacterial killing.

7.
Cancers (Basel) ; 16(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672546

RESUMO

Recent research has implicated the gut microbiota in the development of lymphoma. Dysbiosis of the gut microbial community can disrupt the production of gut microbial metabolites, thereby impacting host physiology and potentially contributing to lymphoma. Dysbiosis-driven release of gut microbial metabolites such as lipopolysaccharides can promote chronic inflammation, potentially elevating the risk of lymphoma. In contrast, gut microbial metabolites, such as short-chain fatty acids, have shown promise in preclinical studies by promoting regulatory T-cell function, suppressing inflammation, and potentially preventing lymphoma. Another metabolite, urolithin A, exhibited immunomodulatory and antiproliferative properties against lymphoma cell lines in vitro. While research on the role of gut microbial metabolites in lymphoma is limited, this article emphasizes the need to comprehend their significance, including therapeutic applications, molecular mechanisms of action, and interactions with standard chemotherapies. The article also suggests promising directions for future research in this emerging field of connection between lymphoma and gut microbiome.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38580206

RESUMO

BACKGROUND: US-based perioperative anaphylaxis (POA) studies are limited to single-center experiences. A recent report found that a serum acute tryptase (sAT) >9.8 ng/mL or mast cell activation (MCA) can predict POA causal agent identification. Urinary mast cell mediator metabolites (uMC) have not been studied in POA. OBJECTIVE: To analyze the epidemiologic data of POA, to determine if sAT or MCA can predict suspected causal agent identification, and to evaluate uMC utility in POA. METHODS: This study is a retrospective multicenter review of POA cases that were subcategorized by suspected causal agent identification status. sAT, MCA (defined as sAT >2 + 1.2 × serum baseline tryptase), and uMC (N-methylhistamine [N-MH], 11ß-prostaglandin-F2α [11ß-PGF2α], leukotriene E4 [LTE4]) were recorded. RESULTS: Of 100 patients (mean age 52 [standard deviation 17] years, 94% adult, 50% female, 90% White, and 2% Hispanic) with POA, 73% had an sAT available, 41% had MCA, 16% had uMC available, and 50% had an identifiable suspected cause. POA cases with an identifiable suspected cause had a positive MCA status (100% vs 78%; P = .01) compared with POA with an unidentifiable cause. An elevated median sAT did not predict causal agent identification. Positive uMC were not associated with suspected causal agent identification during POA. Patients with positive uMC had a higher median sAT (30 vs 6.45 ng/mL; P = .001) and MCA status (96% vs 12%; P = .001) compared with negative uMC patients. Patients with POA had an elevated acute/baseline uMC ratios: 11ß-PGF2α ratio > 1.6, N-MH ratio >1.7, and LTE4 ratio >1.8. CONCLUSIONS: The presence of MCA in POA is associated with suspected causal agent identification. Positive uMC possibly correlate with a higher sAT level and MCA status but require further study. The authors suggest applying an acute/baseline uMC ratio (11ß-PGF2α ratio >1.6, N-MH ratio >1.7, and LTE4 ratio >1.87) in patients with POA for MCA when a tryptase level is inconclusive during POA evaluations.

9.
Cell Stem Cell ; 31(5): 734-753.e8, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38608707

RESUMO

Autonomic parasympathetic neurons (parasymNs) control unconscious body responses, including "rest-and-digest." ParasymN innervation is important for organ development, and parasymN dysfunction is a hallmark of autonomic neuropathy. However, parasymN function and dysfunction in humans are vastly understudied due to the lack of a model system. Human pluripotent stem cell (hPSC)-derived neurons can fill this void as a versatile platform. Here, we developed a differentiation paradigm detailing the derivation of functional human parasymNs from Schwann cell progenitors. We employ these neurons (1) to assess human autonomic nervous system (ANS) development, (2) to model neuropathy in the genetic disorder familial dysautonomia (FD), (3) to show parasymN dysfunction during SARS-CoV-2 infection, (4) to model the autoimmune disease Sjögren's syndrome (SS), and (5) to show that parasymNs innervate white adipocytes (WATs) during development and promote WAT maturation. Our model system could become instrumental for future disease modeling and drug discovery studies, as well as for human developmental studies.


Assuntos
Diferenciação Celular , Disautonomia Familiar , Células-Tronco Pluripotentes , Humanos , Células-Tronco Pluripotentes/citologia , Disautonomia Familiar/patologia , Neurônios , Síndrome de Sjogren/patologia , COVID-19/virologia , COVID-19/patologia , Animais , Sistema Nervoso Parassimpático , Células de Schwann , Camundongos , SARS-CoV-2/fisiologia
10.
J Agric Food Chem ; 72(13): 7203-7218, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38518258

RESUMO

Diabetes complications are associated with aldose reductase (AR) and advanced glycation end products (AGEs). Using bioassay-guided isolation by column chromatography, 10 flavonoids and one coumarin were isolated from Poncirus trifoliata Rafin and tested in vitro for an inhibitory effect against human recombinant AR (HRAR) and rat lens AR (RLAR). Prunin, narirutin, and naringin inhibited RLAR (IC50 0.48-2.84 µM) and HRAR (IC50 0.68-4.88 µM). Docking simulations predicted negative binding energies and interactions with the RLAR and HRAR binding pocket residues. Prunin (0.1 and 12.5 µM) prevented the formation of fluorescent AGEs and nonfluorescent Nε-(carboxymethyl) lysine (CML), as well as the fructose-glucose-mediated protein glycation and oxidation of human serum albumin (HSA). Prunin suppressed the formation of the ß-cross-amyloid structure of HSA. These results indicate that prunin inhibits oxidation-dependent protein damage, AGE formation, and AR, which may help prevent diabetes complications.


Assuntos
Complicações do Diabetes , Cristalino , Florizina/análogos & derivados , Poncirus , Ratos , Humanos , Animais , Glucose/farmacologia , Poncirus/metabolismo , Reação de Maillard , Produtos Finais de Glicação Avançada/metabolismo , Albumina Sérica Humana , Aldeído Redutase/metabolismo , Frutose
11.
J Pain ; : 104514, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522594

RESUMO

Migraine is a complex and highly incapacitating neurological disorder that affects around 15% of the general population with greater incidence in women, often at the most productive age of life. Migraine physiopathology is still not fully understood, but it involves multiple mediators and events in the trigeminovascular system and the central nervous system. The identification of calcitonin gene-related peptide as a key mediator in migraine physiopathology has led to the development of effective and highly selective antimigraine therapies. However, this treatment is neither accessible nor effective for all migraine sufferers. Thus, a better understanding of migraine mechanisms and the identification of potential targets are still clearly warranted. Voltage-gated calcium channels (VGCCs) are widely distributed in the trigeminovascular system, and there is accumulating evidence of their contribution to the mechanisms associated with headache pain. Several drugs used in migraine abortive or prophylactic treatment target VGCCs, which probably contributes to their analgesic effect. This review aims to summarize the current evidence of VGGC contribution to migraine physiopathology and to discuss how current pharmacological options for migraine treatment interfere with VGGC function. PERSPECTIVE: Calcitonin gene-related peptide (CGRP) represents a major migraine mediator, but few studies have investigated the relationship between CGRP and VGCCs. CGRP release is calcium channel-dependent and VGGCs are key players in familial migraine. Further studies are needed to determine whether VGCCs are suitable molecular targets for treating migraine.

12.
Biomed Pharmacother ; 174: 116472, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531121

RESUMO

The Voltage-Gated Calcium Channel (VGCC) auxiliary subunit Cavα2δ-1 (CACNA2D1) is the target/receptor of gabapentinoids which are known therapeutics in epilepsy and neuropathic pain. Following damage to the peripheral sensory nervous system, Cavα2δ-1 is upregulated in dorsal root ganglion (DRG) neurons in several animal models of chronic neuropathic pain. Gabapentinoids, such as gabapentin and pregabalin, engage with Cavα2δ-1 via binding an arginine residue (R241) within an RRR motif located at the N-terminus of human Cavα2δ-1. A novel, next generation gabapentinoid, engineered not to penetrate the brain, was able to generate a strong analgesic response in Chronic Constriction Injury animal model of chronic neuropathic pain and showed binding specificity for Cavα2δ-1 versus the Cavα2δ-2 subunit. This novel non-brain penetrant gabapentinoid, binds to R241 and a novel binding site on Cavα2δ-1, which is located within the VGCC_α2 domain, identified as a lysine residue within an IKAK amino acid motif (K634). The overall whole cell current amplitudes were diminished by the compound, with these inhibitory effects being diminished in R241A mutant Cavα2δ-1 subunits. The functional effects occurred at lower concentrations than those needed for inhibition by gabapentin or pregabalin, which apparently bound the Cavα2δ-1 subunit only on the R241 and not on the K634 residue. Our work sets the stage for the identification and characterisation of novel compounds with therapeutic properties in neuropathic pain and possibly in other disorders and conditions which require engagement of the Cavα2δ-1 target.


Assuntos
Canais de Cálcio Tipo L , Neuralgia , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Animais , Ligantes , Humanos , Masculino , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Gabapentina/farmacologia , Ratos Sprague-Dawley , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Ratos , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo N/metabolismo , Canais de Cálcio Tipo N/genética , Analgésicos/farmacologia , Modelos Animais de Doenças , Pregabalina/farmacologia
13.
PLoS One ; 19(2): e0296960, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394155

RESUMO

Tubulin tyrosine ligase 12 (TTLL12) is a promising target for therapeutic intervention since it has been implicated in tumour progression, the innate immune response to viral infection, ciliogenesis and abnormal cell division. It is the most mysterious of a fourteen-member TTL/TTLL family, since, although it is the topmost conserved in evolution, it does not have predicted enzymatic activities. TTLL12 seems to act as a pseudo-enzyme that modulates various processes indirectly. Given the need to target its functions, we initially set out to identify a property of TTLL12 that could be used to develop a reliable high-throughput screening assay. We discovered that TTLL12 suppresses the cell toxicity of nitrotyrosine (3-nitrotyrosine) and its ligation to the C-terminus of detyrosinated α-tubulin (abbreviated to ligated-nitrotyrosine). Nitrotyrosine is produced by oxidative stress and is associated with cancer progression. Ligation of nitrotyrosine has been postulated to be a check-point induced by excessive cell stress. We found that the cytotoxicities of nitrotyrosine and tubulin poisons are independent of one another, suggesting that drugs that increase nitrotyrosination could be complementary to current tubulin-directed therapeutics. TTLL12 suppression of nitrotyrosination of α-tubulin was used to develop a robust cell-based ELISA assay that detects increased nitrotyrosination in cells that overexpress TTLL12 We adapted it to a high throughput format and used it to screen a 10,000 molecule World Biological Diversity SETTM collection of low-molecular weight molecules. Two molecules were identified that robustly activate nitrotyrosine ligation at 1 µM concentration. This is the pioneer screen for molecules that modulate nitrotyrosination of α-tubulin. The molecules from the screen will be useful for the study of TTLL12, as well as leads for the development of drugs to treat cancer and other pathologies that involve nitrotyrosination.


Assuntos
Neoplasias , Tubulina (Proteína) , Tirosina/análogos & derivados , Humanos , Tirosina/farmacologia , Divisão Celular , Microtúbulos
14.
Cell Rep Med ; 5(2): 101425, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38382469

RESUMO

Progressive myoclonus epilepsy type 7, a debilitating neurological disorder, is caused by a loss-of-function mutation in the KV3.1 channel. Exciting work by Feng et al.1 utilizes a new knockin mouse model to identify a potential therapeutic intervention.


Assuntos
Epilepsias Mioclônicas Progressivas , Animais , Camundongos , Epilepsias Mioclônicas Progressivas/genética , Mutação
15.
Eur J Pharmacol ; 967: 176416, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38342359

RESUMO

Cav3.2 T-type calcium channels are important targets for pain relief in rodent models of inflammatory and neuropathic pain. Even though many T-type channel blockers have been tested in mice, only one molecule, ABT-639, has been tested in phase II clinical studies and did not produce analgesic effects over placebo. Here we examined the effects of ABT-639 on Cav3.2 channel activity in tsA-201 cells and dorsal root ganglion (DRG) neurons, in comparison with another established Cav3.2 inhibitor Z944. These experiments revealed that Z944 mediated ∼100-fold more potent inhibition of Cav3.2 currents than ABT-639, with the latter blocking channel activity by less than 15 percent when applied at a concentration of 30 µM. A slight increase in ABT-639 potency was observed at more depolarized holding potentials, suggesting that this compound may act preferentially on inactivated channels. We tested the effects of both compounds in the Complete Freund's Adjuvant (CFA) model of chronic inflammatory pain, and in partial sciatic nerve injury model of neuropathic pain in mice. In the neuropathic pain model, both Z944 and ABT-639 reversed mechanical hypersensitivity to similar degrees when delivered systemically, but remarkably, when delivered intrathecally, only Z944 was effective. In the CFA model, both compounds reversed thermal hyperalgesia upon systemic delivery, but only Z944 mediated pain relief upon intrathecal delivery, indicating that ABT-639 acts primarily at peripheral sites. ABT-639 lost its analgesic effects in CFA treated Cav3.2 null mice, indicating that these channels are essential for ABT-639-mediated pain relief despite its poor inhibition of Cav3.2 currents.


Assuntos
Benzenossulfonamidas , Canais de Cálcio Tipo T , Dor Crônica , Compostos Heterocíclicos com 2 Anéis , Neuralgia , Camundongos , Animais , Neuralgia/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Modelos Animais de Doenças , Dor Crônica/tratamento farmacológico , Bloqueadores dos Canais de Cálcio/farmacologia
16.
J Allergy Clin Immunol Pract ; 12(5): 1181-1191.e10, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38242531

RESUMO

BACKGROUND: Using the reaction history in logistic regression and machine learning (ML) models to predict penicillin allergy has been reported based on non-US data. OBJECTIVE: We developed ML positive penicillin allergy testing prediction models from multisite US data. METHODS: Retrospective data from 4 US-based hospitals were grouped into 4 datasets: enriched training (1:3 case-control matched cohort), enriched testing, nonenriched internal testing, and nonenriched external testing. ML algorithms were used for model development. We determined area under the curve (AUC) and applied the Shapley Additive exPlanations (SHAP) framework to interpret risk drivers. RESULTS: Of 4777 patients (mean age 60 [standard deviation: 17] years; 68% women, 91% White, and 86% non-Hispanic) evaluated for penicillin allergy labels, 513 (11%) had positive penicillin allergy testing. Model input variables were frequently missing: immediate or delayed onset (71%), signs or symptoms (13%), and treatment (31%). The gradient-boosted model was the strongest model with an AUC of 0.67 (95% confidence interval [CI]: 0.57-0.77), which improved to 0.87 (95% CI: 0.73-1) when only cases with complete data were used. Top SHAP drivers for positive testing were reactions within the last year and reactions requiring medical attention; female sex and reaction of hives/urticaria were also positive drivers. CONCLUSIONS: An ML prediction model for positive penicillin allergy skin testing using US-based retrospective data did not achieve performance strong enough for acceptance and adoption. The optimal ML prediction model for positive penicillin allergy testing was driven by time since reaction, seek medical attention, female sex, and hives/urticaria.


Assuntos
Hipersensibilidade a Drogas , Aprendizado de Máquina , Penicilinas , Humanos , Feminino , Penicilinas/efeitos adversos , Masculino , Hipersensibilidade a Drogas/epidemiologia , Hipersensibilidade a Drogas/diagnóstico , Estudos Retrospectivos , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Idoso , Adulto , Antibacterianos/efeitos adversos , Estudos de Casos e Controles , Testes Cutâneos
17.
Small ; 20(20): e2308680, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225709

RESUMO

Gut microbiota function has numerous effects on humans and the diet humans consume has emerged as a pivotal determinant of gut microbiota function. Here, a new concept that gut microbiota can be trained by diet-derived exosome-like nanoparticles (ELNs) to release healthy outer membrane vesicles (OMVs) is introduced. Specifically, OMVs released from garlic ELN (GaELNs) trained human gut Akkermansia muciniphila (A. muciniphila) can reverse high-fat diet-induced type 2 diabetes (T2DM) in mice. Oral administration of OMVs released from GaELNs trained A. muciniphila can traffick to the brain where they are taken up by microglial cells, resulting in inhibition of high-fat diet-induced brain inflammation. GaELNs treatment increases the levels of OMV Amuc-1100, P9, and phosphatidylcholines. Increasing the levels of Amuc-1100 and P9 leads to increasing the GLP-1 plasma level. Increasing the levels of phosphatidylcholines is required for inhibition of cGas and STING-mediated inflammation and GLP-1R crosstalk with the insulin pathway that leads to increasing expression of Insulin Receptor Substrate (IRS1 and IRS2) on OMV targeted cells. These findings reveal a molecular mechanism whereby OMVs from plant nanoparticle-trained gut bacteria regulate genes expressed in the brain, and have implications for the treatment of brain dysfunction caused by a metabolic syndrome.


Assuntos
Eixo Encéfalo-Intestino , Diabetes Mellitus Tipo 2 , Exossomos , Alho , Microbioma Gastrointestinal , Nanopartículas , Diabetes Mellitus Tipo 2/metabolismo , Alho/química , Animais , Nanopartículas/química , Exossomos/metabolismo , Camundongos , Akkermansia , Humanos , Masculino , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Encéfalo/patologia
19.
Molecules ; 29(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257323

RESUMO

Cannabis, renowned for its historical medicinal use, harbours various bioactive compounds-cannabinoids, terpenes, and flavonoids. While major cannabinoids like delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) have received extensive scrutiny for their pharmacological properties, emerging evidence underscores the collaborative interactions among these constituents, suggesting a collective therapeutic potential. This comprehensive review explores the intricate relationships and synergies between cannabinoids, terpenes, and flavonoids in cannabis. Cannabinoids, pivotal in cannabis's bioactivity, exhibit well-documented analgesic, anti-inflammatory, and neuroprotective effects. Terpenes, aromatic compounds imbuing distinct flavours, not only contribute to cannabis's sensory profile but also modulate cannabinoid effects through diverse molecular mechanisms. Flavonoids, another cannabis component, demonstrate anti-inflammatory, antioxidant, and neuroprotective properties, particularly relevant to neuroinflammation. The entourage hypothesis posits that combined cannabinoid, terpene, and flavonoid action yields synergistic or additive effects, surpassing individual compound efficacy. Recognizing the nuanced interactions is crucial for unravelling cannabis's complete therapeutic potential. Tailoring treatments based on the holistic composition of cannabis strains allows optimization of therapeutic outcomes while minimizing potential side effects. This review underscores the imperative to delve into the intricate roles of cannabinoids, terpenes, and flavonoids, offering promising prospects for innovative therapeutic interventions and advocating continued research to unlock cannabis's full therapeutic potential within the realm of natural plant-based medicine.


Assuntos
Canabidiol , Cannabis , Alucinógenos , Doenças Neuroinflamatórias , Terpenos/farmacologia , Agonistas de Receptores de Canabinoides , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
20.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255944

RESUMO

Emerging research has revealed a complex bidirectional interaction between the gut microbiome and cannabis. Preclinical studies have demonstrated that the gut microbiota can significantly influence the pharmacological effects of cannabinoids. One notable finding is the ability of the gut microbiota to metabolise cannabinoids, including Δ9-tetrahydrocannabinol (THC). This metabolic transformation can alter the potency and duration of cannabinoid effects, potentially impacting their efficacy in cancer treatment. Additionally, the capacity of gut microbiota to activate cannabinoid receptors through the production of secondary bile acids underscores its role in directly influencing the pharmacological activity of cannabinoids. While the literature reveals promising avenues for leveraging the gut microbiome-cannabis axis in cancer therapy, several critical considerations must be accounted for. Firstly, the variability in gut microbiota composition among individuals presents a challenge in developing universal treatment strategies. The diversity in gut microbiota may lead to variations in cannabinoid metabolism and treatment responses, emphasising the need for personalised medicine approaches. The growing interest in understanding how the gut microbiome and cannabis may impact cancer has created a demand for up-to-date, comprehensive reviews to inform researchers and healthcare practitioners. This review provides a timely and invaluable resource by synthesizing the most recent research findings and spotlighting emerging trends. A thorough examination of the literature on the interplay between the gut microbiome and cannabis, specifically focusing on their potential implications for cancer, is presented in this review to devise innovative and effective therapeutic strategies for managing cancer.


Assuntos
Cannabis , Microbioma Gastrointestinal , Alucinógenos , Neoplasias , Humanos , Agonistas de Receptores de Canabinoides , Dronabinol , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...