Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biomedicines ; 12(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672068

RESUMO

Lead exposure is a significant health concern, ranking among the top 10 most harmful substances for humans. There are no safe levels of lead exposure, and it affects multiple body systems, especially the cardiovascular and neurological systems, leading to problems such as hypertension, heart disease, cognitive deficits, and developmental delays, particularly in children. Gender differences are a crucial factor, with women's reproductive systems being especially vulnerable, resulting in fertility issues, pregnancy complications, miscarriages, and premature births. The globalization of lead exposure presents new challenges in managing this issue. Therefore, understanding the gender-specific implications is essential for developing effective treatments and public health strategies to mitigate the impact of lead-related health problems. This study examined the effects of intermittent and permanent lead exposure on both male and female animals, assessing behaviours like anxiety, locomotor activity, and long-term memory, as well as molecular changes related to astrogliosis. Additionally, physiological and autonomic evaluations were performed, focusing on baro- and chemoreceptor reflexes. The study's findings revealed that permanent lead exposure has more severe health consequences, including hypertension, anxiety, and reactive astrogliosis, affecting both genders. However, males exhibit greater cognitive, behavioural, and respiratory changes, while females are more susceptible to chemoreflex hypersensitivity. In contrast, intermittent lead exposure leads to hypertension and reactive astrogliosis in both genders. Still, females are more vulnerable to cognitive impairment, increased respiratory frequency, and chemoreflex hypersensitivity, while males show more reactive astrocytes in the hippocampus. Overall, this research emphasizes the importance of not only investigating different types of lead exposure but also considering gender differences in toxicity when addressing this public health concern.

2.
Support Care Cancer ; 32(3): 174, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38378875

RESUMO

PURPOSE: Physical exercise has positive effects on clinical outcomes of breast cancer survivors such as quality of life, fatigue, anxiety, depression, body mass index, and physical fitness. We aimed to study its impact on immune, inflammatory, cardiometabolic, and fatty acids (FA) biomarkers. METHODS: An exploratory sub-analysis of the MAMA_MOVE Gaia After Treatment trial (NCT04024280, registered July 18, 2019) was performed. Blood sample collections occurred during the control phase and at eight weeks of the intervention phase. Samples were subjected to complete leukocyte counts, cytokine, and cardiometabolic marker evaluation using flow cytometry, enzyme-linked immunoassays, and gas chromatography. RESULTS: Ninety-three percent of the 15 participants had body mass index ≥ 25 kg/m2. We observed a decrease of the plasmatic saturated FA C20:0 [median difference - 0.08% (p = 0.048); mean difference - 0.1 (95%CI - 0.1, - 0.0)], positively associated with younger ages. A tendency to increase the saturated FA C18:0 and the ratio of unsaturated/saturated FA and a tendency to decrease neutrophils (within the normal range) and interferon-gamma were observed. CONCLUSIONS: Positive trends of physical exercise on circulating immune cells, inflammatory cytokines, and plasmatic FA were observed. Larger studies will further elucidate the implications of physical exercise on metabolism. These exploratory findings may contribute to future hypothesis-driven research and contribute to meta-analyses.


Assuntos
Neoplasias da Mama , Sobreviventes de Câncer , Doenças Cardiovasculares , Humanos , Feminino , Neoplasias da Mama/terapia , Qualidade de Vida , Ácidos Graxos , Exercício Físico , Biomarcadores , Citocinas
3.
J Clin Med ; 12(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37762798

RESUMO

The abnormal neural control of atria has been considered one of the mechanisms of paroxysmal atrial fibrillation (PAF) pathogenesis. The baroreceptor reflex has an important role in cardiovascular regulation and may serve as an index of autonomic function. This study aimed to analyze the baroreceptor reflex's role in heart rate regulation during upright tilt (HUT) in patients with lone PAF. The study included 68 patients with lone PAF and 34 healthy individuals who underwent baroreflex assessment. Parameters such as baroreflex sensitivity (BRS), number of systolic blood pressure (BP) ramps, and the baroreflex effectiveness index (BEI) were evaluated. The study found that PAF patients had comparable resting BPs and heart rates (HRs) to healthy individuals. However, unlike healthy individuals, PAF patients showed a sustained increase in BP with an upright posture followed by the delayed activation of the baroreceptor function with a blunted HR response and lower BEI values. This indicates a pronounced baroreflex impairment in PAF patients, even at rest. Our data suggest that together with BRS, BEI could be used as a marker of autonomic dysfunction in PAF patients, making it important to further investigate its relationship with AF recurrence after ablation and its involvement in cardiovascular autonomic remodeling.

4.
Biology (Basel) ; 12(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37627036

RESUMO

INTRODUCTION: Hypertension, a leading cause of death, was investigated in this study to understand the role of specific brain regions in regulating blood pressure. The lateral parabrachial nucleus (LPBN), Kolliker-fuse nucleus (KF), and periductal grey matter (PAG) were examined for their involvement in hypertension. METHODS: Lentiviral vectors were used to alter the activity of these brain regions in hypertensive rats. Over a 75-day period, blood pressure, heart rate, reflex responses, and heart rate variability were measured. RESULTS: Decreasing the activity in the LPBN resulted in a reduced sympathetic outflow, lowering the blood pressure and heart rate. In the KF, the sympathetic activity decreased and chemoreflex variation was attenuated, without affecting the blood pressure. Silencing the PAG had no significant impact on blood pressure or sympathetic tone, but decreased cardiac baroreflex gain. DISCUSSION: These findings highlight the significant role of the LPBN in hypertension-related sympathetic activation. Additionally, LPBN and KF neurons appear to activate mechanisms that control respiration and sympathetic outflow during chemoreceptor activation. CONCLUSIONS: The study provided insights into the contribution of the midbrain and pontine regions to neurogenic hypertension and offers potential avenues for future genetic interventions and developing novel treatment approaches.

5.
Biology (Basel) ; 12(7)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37508460

RESUMO

Doxorubicin (DOX) is commonly used in several chemotherapies to treat various cancers, but it is known to cause cardiotoxicity and cardiac symptoms. Autonomic dysfunction is thought to contribute to the cardiotoxic effects of DOX, but the specific dose required to disrupt homeostatic processes is still unclear and is influenced by numerous factors. This study aimed to investigate how the DOX dosage affects autonomic function and physiological parameters, to elucidate the neurocardiac mechanisms underlying the observed cardiovascular side effects. Wistar rats were treated with DOX for four weeks and divided into three dosing groups: DOX8 (2 mg/kg/week), DOX16 (4 mg/kg/week), and DOX20 (5 mg/kg/week). A control group received NaCl 0.9% saline (1 mL/kg/week). In an acute experiment, we recorded blood pressure (BP), electrocardiogram, heart rate (HR), and respiratory rate (RF). Baroreflex gain and chemoreflex sensitivity were calculated, and cardiac tissue was analyzed with picrosirius histochemistry to measure collagen content. Our results showed that the LF/HF ratio, indicative of autonomic activity, was altered along with hypotension and bradycardia at a cumulative DOX dose threshold of 16 mg/kg. We observed a positive correlation between DOX dose and BP, HR, urinary norepinephrine, LF/HF ratio, and fibrotic heart area. Lower LF/HF ratios were associated with high DOX doses, reflecting drug-induced impairment of autonomic control of HR. This study provides valuable insights into the dose-dependent effects of DOX on physiological parameters and the development of cardiovascular dysfunction. These findings are critical, which is important for optimizing the management and therapeutic strategies for patients undergoing DOX-based chemotherapy.

6.
Cells ; 12(5)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36899953

RESUMO

The nervous system is the primary target for lead exposure and the developing brain appears to be especially susceptible, namely the hippocampus. The mechanisms of lead neurotoxicity remain unclear, but microgliosis and astrogliosis are potential candidates, leading to an inflammatory cascade and interrupting the pathways involved in hippocampal functions. Moreover, these molecular changes can be impactful as they may contribute to the pathophysiology of behavioral deficits and cardiovascular complications observed in chronic lead exposure. Nevertheless, the health effects and the underlying influence mechanism of intermittent lead exposure in the nervous and cardiovascular systems are still vague. Thus, we used a rat model of intermittent lead exposure to determine the systemic effects of lead and on microglial and astroglial activation in the hippocampal dentate gyrus throughout time. In this study, the intermittent group was exposed to lead from the fetal period until 12 weeks of age, no exposure (tap water) until 20 weeks, and a second exposure from 20 to 28 weeks of age. A control group (without lead exposure) matched in age and sex was used. At 12, 20 and 28 weeks of age, both groups were submitted to a physiological and behavioral evaluation. Behavioral tests were performed for the assessment of anxiety-like behavior and locomotor activity (open-field test), and memory (novel object recognition test). In the physiological evaluation, in an acute experiment, blood pressure, electrocardiogram, and heart and respiratory rates were recorded, and autonomic reflexes were evaluated. The expression of GFAP, Iba-1, NeuN and Synaptophysin in the hippocampal dentate gyrus was assessed. Intermittent lead exposure induced microgliosis and astrogliosis in the hippocampus of rats and changes in behavioral and cardiovascular function. We identified increases in GFAP and Iba1 markers together with presynaptic dysfunction in the hippocampus, concomitant with behavioral changes. This type of exposure produced significant long-term memory dysfunction. Regarding physiological changes, hypertension, tachypnea, baroreceptor reflex impairment and increased chemoreceptor reflex sensitivity were observed. In conclusion, the present study demonstrated the potential of lead intermittent exposure inducing reactive astrogliosis and microgliosis, along with a presynaptic loss that was accompanied by alterations of homeostatic mechanisms. This suggests that chronic neuroinflammation promoted by intermittent lead exposure since fetal period may increase the susceptibility to adverse events in individuals with pre-existing cardiovascular disease and/or in the elderly.


Assuntos
Hipertensão , Chumbo , Ratos , Animais , Chumbo/metabolismo , Chumbo/farmacologia , Doenças Neuroinflamatórias , Gliose/metabolismo , Hipocampo/metabolismo
7.
Antioxid Redox Signal ; 39(4-6): 321-335, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36641635

RESUMO

Significance: Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects millions around the world. The etiology of PD remains unknown, but environmental and occupational exposures to heavy metals are likely at play, and may impact the severity of the disease. Lead is a toxin known to affect many organs in the body throughout life, particularly the central nervous system. Recent Advances: In this study, we summarize and examine the evidence for such environmental and/or occupational exposures, with a focus on the molecular mechanisms associated with lead exposure and its potential contribution to the onset of parkinsonism in PD. In particular, populational studies suggest higher bone and blood lead levels are associated with increased risk of PD. Interestingly, low levels of lead exposure in the very early stages of life cause increase the production of alpha-synuclein protein in animal models. Critical Issues: Although the specific mechanisms underlying this association have not been fully assessed, oxidative stress and mitochondrial dysfunction are likely implicated and may explain the toxic effects that connect lead exposure to parkinsonism. Future Directions: Additional pre-clinical and clinical studies should be performed in order to further document the molecular link between lead toxicity and PD, as this may open novel perspectives in terms of disease prevention. Antioxid. Redox Signal. 39, 321-335.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Animais , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Chumbo/toxicidade , Transtornos Parkinsonianos/complicações , Sistema Nervoso Central/metabolismo , Modelos Animais
8.
Biology (Basel) ; 11(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36009791

RESUMO

Lead is a heavy metal whose widespread use has resulted in environmental contamination and significant health problems, particularly if the exposure occurs during developmental stages. It is a cumulative toxicant that affects multiple systems of the body, including the cardiovascular and nervous systems. Chronic lead exposure has been defined as a cause of behavioral changes, inflammation, hypertension, and autonomic dysfunction. However, different environmental lead exposure paradigms can occur, and the different effects of these have not been described in a broad comparative study. In the present study, rats of both sexes were exposed to water containing lead acetate (0.2% w/v), from the fetal period until adulthood. Developmental Pb-exposed (DevPb) pups were exposed to lead until 12 weeks of age (n = 13); intermittent Pb exposure (IntPb) pups drank leaded water until 12 weeks of age, tap water until 20 weeks, and leaded water for a second time from 20 to 28 weeks of age (n = 14); and the permanent (PerPb) exposure group were exposed to lead until 28 weeks of age (n = 14). A control group (without exposure, Ctrl), matched in age and sex was used. After exposure protocols, at 28 weeks of age, behavioral tests were performed for assessment of anxiety (elevated plus maze test), locomotor activity (open-field test), and memory (novel object recognition test). Metabolic parameters were evaluated for 24 h, and the acute experiment was carried out. Blood pressure (BP), electrocardiogram, and heart (HR) and respiratory (RF) rates were recorded. Baroreflex gain, chemoreflex sensitivity, and sympathovagal balance were calculated. Immunohistochemistry protocol for NeuN, Syn, Iba-1, and GFAP staining was performed. All Pb-exposed groups showed hypertension, concomitant with a decrease in baroreflex gain and chemoreceptor hypersensitivity, without significant changes in HR and RF. Long-term memory impairment associated with reactive astrogliosis and microgliosis in the dentate gyrus of the hippocampus, indicating the presence of neuroinflammation, was also observed. However, these alterations seemed to reverse after lead abstinence for a certain period (DevPb) and were enhanced when a second exposure occurred (IntPb), along with a synaptic loss. These results suggest that the duration of Pb exposure is more relevant than the timing of exposure, since the PerPb group presented more pronounced effects and a significant increase in the LF and HF bands and anxiety levels. In summary, this is the first study with the characterization and comparison of physiological, autonomic, behavioral, and molecular changes caused by different low-level environmental lead exposures, from the fetal period to adulthood, where the duration of exposure was the main factor for stronger adverse effects. These kinds of studies are of immense importance, showing the importance of the surrounding environment in health from childhood until adulthood, leading to the creation of new policies for toxicant usage control.

9.
EClinicalMedicine ; 48: 101423, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35706482

RESUMO

Background: This study assessed the effectiveness of the NEVERMIND e-health system, consisting of a smart shirt and a mobile application with lifestyle behavioural advice, mindfulness-based therapy, and cognitive behavioural therapy, in reducing depressive symptoms among patients diagnosed with severe somatic conditions. Our hypothesis was that the system would significantly decrease the level of depressive symptoms in the intervention group compared to the control group. Methods: This pragmatic, randomised controlled trial included 425 patients diagnosed with myocardial infarction, breast cancer, prostate cancer, kidney failure, or lower limb amputation. Participants were recruited from hospitals in Turin and Pisa (Italy), and Lisbon (Portugal), and were randomly assigned to either the NEVERMIND intervention or to the control group. Clinical interviews and structured questionnaires were administered at baseline, 12 weeks, and 24 weeks. The primary outcome was depressive symptoms at 12 weeks measured by the Beck Depression Inventory II (BDI-II). Intention-to-treat analyses included 425 participants, while the per-protocol analyses included 333 participants. This trial is registered in the German Clinical Trials Register, DRKS00013391. Findings: Patients were recruited between Dec 4, 2017, and Dec 31, 2019, with 213 assigned to the intervention and 212 to the control group. The sample had a mean age of 59·41 years (SD=10·70), with 44·24% women. Those who used the NEVERMIND system had statistically significant lower depressive symptoms at the 12-week follow-up (mean difference=-3·03, p<0·001; 95% CI -4·45 to -1·62) compared with controls, with a clinically relevant effect size (Cohen's d=0·39). Interpretation: The results of this study show that the NEVERMIND system is superior to standard care in reducing and preventing depressive symptoms among patients with the studied somatic conditions. Funding: The NEVERMIND project received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 689691.

10.
Curr Issues Mol Biol ; 43(3): 2305-2319, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34940136

RESUMO

The increasing consumption of sugar and fat seen over the last decades and the consequent overweight and obesity, were recently linked with a deleterious effect on cognition and synaptic function. A major question, which remains to be clarified, is whether obesity in the elderly is an additional risk factor for cognitive impairment. We aimed at unravelling the impact of a chronic high caloric diet (HCD) on memory performance and synaptic plasticity in aged rats. Male rats were kept on an HCD or a standard diet (control) from 1 to 24 months of age. The results showed that under an HCD, aged rats were obese and displayed significant long-term recognition memory impairment when compared to age-matched controls. Ex vivo synaptic plasticity recorded from hippocampal slices from HCD-fed aged rats revealed a reduction in the magnitude of long-term potentiation, accompanied by a decrease in the levels of the brain-derived neurotrophic factor receptors TrkB full-length (TrkB-FL). No alterations in neurogenesis were observed, as quantified by the density of immature doublecortin-positive neurons in the hippocampal dentate gyrus. This study highlights that obesity induced by a chronic HCD exacerbates age-associated cognitive decline, likely due to impaired synaptic plasticity, which might be associated with deficits in TrkB-FL signaling.


Assuntos
Dieta , Transtornos da Memória/etiologia , Plasticidade Neuronal , Fatores Etários , Animais , Biomarcadores , Encéfalo/metabolismo , Modelos Animais de Doenças , Ingestão de Alimentos , Imuno-Histoquímica , Masculino , Ratos
11.
Int Immunopharmacol ; 84: 106509, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32335479

RESUMO

Animal models of inflammatory diseases support the idea that nuclear factor κB (NF-κB) activation plays a pathophysiological role and is widely implicated in multiple organ dysfunction (MOD). Indeed, the inhibition of the IκB kinase (IKK) complex, involved in the NF-κB pathway, can represent a promising approach to prevent MOD. The present work employed a rat model of systemic inflammation to investigate the preventive effects of Inhibitor of IKK complex (IKK16). In male Wistar rats, systemic inflammation was induced by a tail vein injection of lipopolysaccharides (LPS challenge; 12 mg/kg). Treatment with IKK16 (1 mg/kg body weight) was administered, by tail vein, 15 min post-LPS. Age- and sex-matched healthy rats and LPS rats without treatment were used as controls. At 24 h post-IKK16 treatment, serum enzyme levels indicative of liver, kidney, pancreas and muscle function were evaluated by biochemical analysis, and RT-PCR technique was used to analyze gene expression of pro-inflammatory cytokines. Hemodynamic parameters were also considered to assess the LPS-induced inflammation. IKK16 treatment yielded a strong therapeutic effect in preventing LPS-induced elevation of serological enzyme levels, attenuating hepatic, renal, pancreatic and muscular dysfunction after LPS challenge. Moreover, as expected, LPS promoted a significantly overexpression of TNF-α, IL-6 and IL-1ß in the heart, kidney, and liver; which was diminished by IKK16 treatment. The present study provides convincing evidence that selective inhibition of the IκB kinase complex through the action of IKK16, plays a protective role against LPS-induced multiple organ dysfunction by reducing the acute inflammatory response induced by endotoxin exposure.


Assuntos
Anti-Inflamatórios/uso terapêutico , Quinase I-kappa B/antagonistas & inibidores , Inflamação/tratamento farmacológico , Piperidinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Pirrolidinas/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Barorreflexo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Citocinas/genética , Citocinas/imunologia , Frequência Cardíaca/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/fisiopatologia , Rim/efeitos dos fármacos , Rim/imunologia , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/imunologia , Masculino , Miocárdio/imunologia , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirrolidinas/farmacologia , Ratos Wistar
12.
Neurotox Res ; 37(4): 857-870, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31997153

RESUMO

Long-term lead (Pb) exposure alters the normal development of the nervous system and physiology. It affects multiple organ systems, causing hypertension, cardiorespiratory dysfunction, being a well-known neurotoxin, inducing changes in neurogenesis, neurodegeneration, and glial cells. However, studies of the developmental effects of lead and its outcomes throughout life are lacking. Determine morphofunctional, behavioral, and cognitive developmental effects of long-term lead exposure at three different ages. Wistar rats were exposed to a Pb-acetate solution from fetal period until adulthood and compared to a non-exposed control group. General behavior and cognitive skills were evaluated by behavioral tests and physiological data and cardiorespiratory reflexes measured. Neurodegeneration, neuroinflammation, and synaptic activity were assessed by immunohistochemistry. Lead exposure caused long-lasting anxiety-like behavior and strong long-term memory impairment without changes in locomotor and exploratory activity. Hypertension was observed at all time points, concomitant with baroreflex impairment and increased chemoreflex sensitivity. Persistent neuroinflammation, transient synaptic overexcitation without neurodegeneration was observed. Long-term Pb exposure, since fetal period, causes long-lasting anxiety-like behavior, concomitant with hypertension, without general motor skills impairment. Synaptic overexcitation, reactive astrogliosis, and microgliosis could underlie behavioral and long-term memory changes, which might have been caused during developmental phases and consolidated during adulthood. Also, alterations observed in the cardiorespiratory reflexes can explain persistent hypertension. This longitudinal study identifies and characterizes lead toxicity nature and magnitude, important to devise and test potential interventions to attenuate the long-term harmful effects of lead on the nervous and cardiovascular systems.


Assuntos
Cardiopatias/induzido quimicamente , Cardiopatias/fisiopatologia , Chumbo/toxicidade , Pneumopatias/induzido quimicamente , Pneumopatias/fisiopatologia , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/fisiopatologia , Animais , Animais Recém-Nascidos , Feminino , Cardiopatias/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/fisiopatologia , Chumbo/administração & dosagem , Estudos Longitudinais , Pneumopatias/patologia , Masculino , Doenças Neurodegenerativas/patologia , Gravidez , Ratos , Ratos Wistar , Fatores de Tempo
13.
Neurotoxicology ; 69: 307-319, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30098355

RESUMO

BACKGROUND: Exposures to lead (Pb) during developmental phases can alter the normal course of development, with lifelong health consequences. Permanent Pb exposure leads to behavioral changes, cognitive impairment, sympathoexcitation, tachycardia, hypertension and autonomic dysfunction. However, the effects of an intermittent lead exposure are not yet studied. This pattern of exposure has been recently increasing due to migrations, implementation of school exchange programs and/or residential changes. OBJECTIVE: To determine and compare lead effects on mammal's behavior and physiology, using a rat model of intermittent and permanent Pb exposures. METHODS: Fetuses were intermittently (PbI) or permanently (PbP) exposed to water containing lead acetate (0.2% w/v) throughout life until adulthood (28 weeks of age). A control group (CTL) without any exposure to lead was also used. Anxiety was assessed by elevated plus maze (EPM) and locomotor activity and exploration by open field test (OFT). Blood pressure (BP), electrocardiogram (ECG), heart rate (HR), respiratory frequency (RF), sympathetic and parasympathetic activity and baro- and chemoreceptor reflex profiles were evaluated. Immunohistochemistry protocol for the assessment of neuroinflammation, neuronal loss (NeuN), gliosis and synaptic alterations (Iba-1, GFAP, Syn), were performed at the hippocampus. One-way ANOVA with Tukey's multiple comparison between means were used (significance p < 0.05) for statistical analysis. RESULTS: The intermittent lead exposure produced a significant increase in diastolic and mean BP values, concomitant with a tendency to sympathetic overactivity (estimated by increased low-frequency power) and without significant changes in systolic BP, HR and RF. A chemoreceptor hypersensitivity and a baroreflex impairment were also observed, however, less pronounced when compared to the permanent exposure. Regarding behavioral changes, both lead exposure profiles showed an anxiety-like behavior without changes in locomotor and exploratory activity. Increase in GFAP and Iba-1 positive cells, without changes in NeuN positive cells were found in both exposed groups. Syn staining suffered a significant decrease in PbI group and a significant increase in PbP group. CONCLUSION: This study is the first to show that developmental Pb exposure since fetal period can cause lasting impairments in physiological parameters. The intermittent lead exposure causes adverse health effects, i.e, hypertension, increased respiratory frequency and chemoreflex sensitivity, baroreflex impairment, anxiety, decreased synaptic activity, neuroinflammation and reactive gliosis, in some ways similar to a permanent exposure, however some are lower-grade, due to the shorter duration of exposure. This study brings new insights on the environmental factors that influence autonomic and cardiovascular systems during development, which can help in creating public policy strategies to prevent and control the adverse effects of Pb toxicity.


Assuntos
Ansiedade/induzido quimicamente , Doenças do Sistema Nervoso Autônomo/induzido quimicamente , Hipocampo/efeitos dos fármacos , Hipertensão/induzido quimicamente , Chumbo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Ansiedade/fisiopatologia , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Barorreflexo/efeitos dos fármacos , Barorreflexo/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Feminino , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Hipocampo/fisiopatologia , Hipertensão/fisiopatologia , Inflamação/induzido quimicamente , Inflamação/fisiopatologia , Chumbo/administração & dosagem , Masculino , Gravidez , Ratos , Ratos Wistar , Taxa Respiratória/efeitos dos fármacos , Taxa Respiratória/fisiologia , Poluentes Químicos da Água/administração & dosagem
14.
Curr Hypertens Rep ; 20(2): 14, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29480403

RESUMO

Hypertension is a prevalent and major health problem, involving a complex integration of different organ systems, including the central nervous system (CNS). The CNS and the hypothalamus in particular are intricately involved in the pathogenesis of hypertension. In fact, evidence supports altered hypothalamic neuronal activity as a major factor contributing to increased sympathetic drive and increased blood pressure. Several mechanisms have been proposed to contribute to hypothalamic-driven sympathetic activity, including altered ion channel function. Ion channels are critical regulators of neuronal excitability and synaptic function in the brain and, thus, important for blood pressure homeostasis regulation. These include sodium channels, voltage-gated calcium channels, and potassium channels being some of them already identified in hypothalamic neurons. This brief review summarizes the hypothalamic ion channels that may be involved in hypertension, highlighting recent findings that suggest that hypothalamic ion channel modulation can affect the central control of blood pressure and, therefore, suggesting future development of interventional strategies designed to treat hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/fisiopatologia , Hipotálamo/fisiopatologia , Canais Iônicos/fisiologia , Animais , Sistema Nervoso Autônomo/fisiopatologia , Humanos , Neurônios/fisiologia
15.
Rev Port Cardiol ; 36(10): 757-771, 2017 Oct.
Artigo em Inglês, Português | MEDLINE | ID: mdl-29037833

RESUMO

Knowledge of the physiology underlying the autonomic nervous system is pivotal for understanding autonomic dysfunction in clinical practice. Autonomic dysfunction may result from primary modifications of the autonomic nervous system or be secondary to a wide range of diseases that cause severe morbidity and mortality. Together with a detailed history and physical examination, laboratory assessment of autonomic function is essential for the analysis of various clinical conditions and the establishment of effective, personalized and precise therapeutic schemes. This review summarizes the main aspects of autonomic medicine that constitute the background of cardiovascular autonomic dysfunction.


Assuntos
Doenças do Sistema Nervoso Autônomo , Doenças do Sistema Nervoso Autônomo/complicações , Doenças do Sistema Nervoso Autônomo/diagnóstico , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Doenças Cardiovasculares/etiologia , Vias Eferentes , Humanos , Reflexo
16.
Brain Res ; 1646: 109-115, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27238462

RESUMO

BACKGROUND: Chronic overexpression of an inwardly rectifying potassium channel (hKir2.1) in the paraventricular nucleus of the hypothalamus (PVN) and in the rostral ventrolateral medulla (RVLM) to suppress neuronal excitability, resulted in a long term decrease of blood pressure and sympathetic output in spontaneously hypertensive rats (SHR). OBJECTIVE: Evaluate gene expression in end-organs of SHR after a chronic overexpression of hKir2.1 channels in either the PVN or RVLM. METHODS: mRNA levels of 16 genes known to be involved with blood pressure regulation were evaluated using RT-PCR in tissues from the heart, common carotid artery and kidney of SHR submitted to chronic depression of PVN and RVLM excitability using a lentiviral vector (LVhKir2.1). RESULTS: In SHR hearts in which either the PVN or RVLM were injected with LVhKir2.1, there was a downregulation of angiotensin II receptor 1b (AT1), ATPase, Ca(2+)-transporter, troponin T2 and tropomyosin2 (only in RVLM) relative to the sham group. In the kidney of SHR with LVhKir2.1 injections in PVN and RVLM, angiotensinogen, angiotensin II receptor2 (AT2) and endothelin1 were all upregulated compared to sham. In the carotid artery, endothelin2, endothelin receptor A and B were up-regulated following LVhKir2.1 in to either the PVN or RVLM relative to sham. CONCLUSION: Chronic overexpression of hKir2.1 channels in PVN and RVLM, promoted a BP decrease with up-regulation of angiotensinogen and AT2 genes expression in the kidney and down-regulation of AT1 in the heart of SHR. Thus, we demonstrate the potential efficacy of central manipulation to protect against end-organ damage in essential hypertension.


Assuntos
Artéria Carótida Primitiva/metabolismo , Expressão Gênica , Rim/metabolismo , Bulbo/metabolismo , Miocárdio/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Pressão Sanguínea , Vetores Genéticos , Lentivirus/fisiologia , Masculino , Canais de Potássio Corretores do Fluxo de Internalização/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos SHR , Sistema Nervoso Simpático/metabolismo
17.
Neurotoxicology ; 54: 170-177, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27133440

RESUMO

Mortality and morbidity by toxic metals is an important issue of occupational health. Lead is an ubiquitous heavy metal in our environment despite having no physiological role in biological systems. Being an homeostatic controller is expected that the autonomic nervous system would show a degree of impairment in lead toxicity. In fact, sympathoexcitation associated to high blood pressure and tachypnea has been described together with baroreflex dysfunction. However, the mechanisms underlying the autonomic dysfunction and the interplay between baro- and chemoreflex are not yet fully clarified. The angiotensinogenic PVN-NTS axis (paraventricular nucleus of the hypothalamus - nucleus tractus solitarius axis) is a particularly important neuronal pathway that could be responsible for the autonomic dysfunction and the cardiorespiratory impairment in lead toxicity. Within the current work, we addressed in vivo, baro- and chemoreceptor reflex behaviour, before and after central angiotensin inhibition, in order to better understand the cardiorespiratory autonomic mechanisms underlying the toxic effects of long-term lead exposure. For that, arterial pressure, heart rate, respiratory rate, sympathetic and parasympathetic activity and baro- and chemoreceptor reflex profiles of anaesthetized young adult rats exposed to lead, from foetal period to adulthood, were evaluated. Results showed increased chemosensitivity together with baroreceptor reflex impairment, sympathetic over-excitation, hypertension and tachypnea. Chemosensitivity and sympathetic overexcitation were reversed towards normality values by NTS treatment with A-779, an angiotensin (1-7) antagonist. No parasympathetic changes were observed before and after A-799 treatment. In conclusion, angiotensin (1-7) at NTS level is involved in the autonomic dysfunction observed in lead toxicity. The increased sensitivity of chemoreceptor reflex expresses the clear impairment of autonomic outflow to the cardiovascular and respiratory systems induced by putative persistent, long duration, alert reaction evoked by the long term exposure to lead toxic effects. The present study brings new insights on the central mechanisms implicated in the autonomic dysfunction induced by lead exposure which are relevant for the development of additional therapeutic options to tackle lead toxicity symptoms.


Assuntos
Doenças do Sistema Nervoso Autônomo/induzido quimicamente , Barorreflexo/efeitos dos fármacos , Células Quimiorreceptoras/efeitos dos fármacos , Chumbo/toxicidade , Taxa Respiratória/efeitos dos fármacos , Angiotensina II/análogos & derivados , Angiotensina II/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Feminino , Frequência Cardíaca/efeitos dos fármacos , Microinjeções , Fragmentos de Peptídeos/farmacologia , Fenilefrina/farmacologia , Gravidez , Ratos , Ratos Wistar , Núcleo Solitário/efeitos dos fármacos , Simpatomiméticos/farmacologia
18.
Auton Neurosci ; 186: 22-31, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25283065

RESUMO

BACKGROUND: It is well established that sympathetic nervous system is responsible for the onset, development and maintenance of neurogenic hypertension. The rostroventrolateral medulla (RVLM) and medullo-cervical pressor area (MCPA) are important central sympathoexcitatory regions whose role on neurogenic hypertension remains unknown. OBJECTIVE: To establish RVLM and MCPA roles in the long-term regulation of blood pressure by depressing their neuron activity through the over-expression of hKir2.1-potassium channel in conscious spontaneously hypertensive rats (SHR). METHODS: In SHR, a lentiviral vector LVV-hKir2.1 was microinjected into RVLM or MCPA areas. A sham group was injected with LVV-eGFP. Blood pressure (BP) and heart rate (HR) were continuously monitored for 75 days. Baroreflex and chemoreflex functions were evaluated. Baroreflex gain, chemoreflex sensitivity, BP and HR variability were calculated. RESULTS: LVV-hKir2.1 expression in RVLM, but not in MCPA, produced a significant time-dependent decrease in systolic, diastolic, mean-BP and LF of systolic BP at 60-days post-injection. No significant changes were seen in LVV-eGFP RVLM injected SHR. CONCLUSION: Data show that chronic expression of Kir2.1 in the RVLM of conscious SHR caused a marked and sustained decrease in BP without changes in the baro- and peripheral chemoreceptor reflex evoked responses. This decrease was mostly due to a reduction in sympathetic output revealed indirectly by a decrease in the power density of the SBP-LF band. Our data are amongst the firsts to demonstrate the role of the RVLM in maintaining BP levels in hypertension in conscious SHR. We suggest that a decrease in RVLM neuronal activity is an effective anti-hypertensive treatment strategy.


Assuntos
Hipertensão/fisiopatologia , Bulbo/fisiopatologia , Neurônios/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Determinação da Pressão Arterial , Western Blotting , Ritmo Circadiano/fisiologia , Técnicas de Transferência de Genes , Vetores Genéticos , Frequência Cardíaca/fisiologia , Humanos , Imuno-Histoquímica , Lentivirus/genética , Masculino , Monitorização Fisiológica , Canais de Potássio Corretores do Fluxo de Internalização/genética , Ratos Endogâmicos SHR
19.
Exp Physiol ; 99(1): 89-100, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24142454

RESUMO

Changes in the sympathetic nervous system are responsible for the initiation, development and maintenance of hypertension. An important central sympathoexcitatory region is the paraventricular nucleus (PVN) of the hypothalamus, which may become more active in hypertensive conditions, as shown in acute studies previously. Our objective was to depress PVN neuronal activity chronically by the overexpression of an inwardly rectifying potassium channel (hKir2.1), while evaluating the consequences on blood pressure (BP) and its reflex regulation. In spontaneously hypertensive rats (SHRs) and Wistar rats (WKY) lentiviral vectors (LVV-hKir2.1; LV-TREtight-Kir-cIRES-GFP5 4 × 10(9) IU and LV-Syn-Eff-G4BS-Syn-Tetoff 6.2 × 10(9) IU in a ratio 1:4) were stereotaxically microinjected bilaterally into the PVN. Sham-treated SHRs and WKY received bilateral PVN microinjections of LVV-eGFP (LV-Syn-Eff-G4BS-Syn-Tetoff 6.2 × 10(9) IU and LV-TREtight-GFP 5.7 × 10(9) IU in a ratio 1:4). Blood pressure was monitored continuously by radio-telemetry and evaluated over 75 days. Baroreflex gain was evaluated using phenylephrine (25 µg ml(-1), i.v.), whereas lobeline (25 µg ml(-1), i.v.) was used to stimulate peripheral chemoreceptors. In SHRs but not normotensive WKY rats, LVV-hKir2.1 expression in the PVN produced time-dependent and significant decreases in systolic (from 158 ± 3 to 132 ± 6 mmHg; P < 0.05) and diastolic BP (from 135 ± 4 to 113 ± 5 mmHg; P < 0.05). The systolic BP low-frequency band was reduced (from 0.79 ± 0.13 to 0.42 ± 0.09 mmHg(2); P < 0.05), suggesting reduced sympathetic vasomotor tone. Baroreflex gain was increased and peripheral chemoreflex depressed after PVN microinjection of LVV-hKir2.1. We conclude that the PVN plays a major role in long-term control of BP and sympathetic nervous system activity in SHRs. This is associated with reductions in both peripheral chemosensitivity and respiratory-induced sympathetic modulation and an improvement in baroreflex sensitivity. Our results support the PVN as a powerful site to control BP in neurogenic hypertension.


Assuntos
Hipertensão/fisiopatologia , Hipotálamo/fisiopatologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Endogâmicos SHR/fisiologia , Sistema Vasomotor/fisiopatologia , Animais , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Células Quimiorreceptoras/metabolismo , Células Quimiorreceptoras/fisiologia , Frequência Cardíaca/fisiologia , Hipertensão/metabolismo , Hipotálamo/metabolismo , Masculino , Microinjeções/métodos , Núcleo Hipotalâmico Paraventricular/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos , Ratos Endogâmicos SHR/metabolismo , Ratos Endogâmicos WKY , Ratos Wistar , Respiração , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Vasoconstrição/fisiologia , Sistema Vasomotor/metabolismo
20.
Rev Port Cardiol ; 31(7-8): 469-76, 2012.
Artigo em Português | MEDLINE | ID: mdl-22672857

RESUMO

UNLABELLED: Neurocardiogenic syncope (NCS) is a common clinical entity resulting from an excessive reflex autonomic response, particularly during orthostatism. Treatment options are controversial and of limited effectiveness. Tilt training (TT) is a promising option to treat these patients. However, its mechanism of action and clinical impact remain unclear. OBJECTIVE: To characterize hemodynamic and autonomic responses during a TT program in patients with NCS refractory to conventional measures. METHODS: We studied 28 patients (50% male, mean age 41±14 years) without structural heart disease, with NCS documented by tilt testing. The TT program included 9 tilt sessions (3 times a week, 30 min) (60° - 6 sessions, 70° - 3 sessions), under ECG and blood pressure monitoring combined with home orthostatic self-training and 10° head-up during sleep. Systolic volume, cardiac output, total peripheral resistance, baroreflex sensitivity and heart-rate variability were computed. Patients were reassessed at 1 month and every 6 months for a maximum of 36 months (24±12 months). RESULTS: Over the course of the TT program there was a significant increase in total peripheral resistance (1485±225 vs. 1591±187 dyn·s·cm(-5), p<0.05), with a decrease in standard deviation (206±60 vs. 150±42, p<0.05). During follow-up, syncope recurred in five patients (19%), with a significant reduction in the number of episodes (4.0±3.2/patient in the 12 months before TT vs. 1.4±0.8/patient post-TT, p<0.05). CONCLUSION: In refractory NCS, TT may be an effective therapeutic option, with long-term benefits. These results appear to be due to an increase in vasoconstrictor reserve combined with a reduction in its variance.


Assuntos
Síncope Vasovagal/fisiopatologia , Vasoconstrição , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Teste da Mesa Inclinada , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...