Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(16): eabl9250, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35452281

RESUMO

It is not currently possible to quantify regional-scale fossil fuel carbon dioxide (ffCO2) emissions with high accuracy in near real time. Existing atmospheric methods for separating ffCO2 from large natural carbon dioxide variations are constrained by sampling limitations, so that estimates of regional changes in ffCO2 emissions, such as those occurring in response to coronavirus disease 2019 (COVID-19) lockdowns, rely on indirect activity data. We present a method for quantifying regional signals of ffCO2 based on continuous atmospheric measurements of oxygen and carbon dioxide combined into the tracer "atmospheric potential oxygen" (APO). We detect and quantify ffCO2 reductions during 2020-2021 caused by the two U.K. COVID-19 lockdowns individually using APO data from Weybourne Atmospheric Observatory in the United Kingdom and a machine learning algorithm. Our APO-based assessment has near-real-time potential and provides high-frequency information that is in good agreement with the spread of ffCO2 emissions reductions from three independent lower-frequency U.K. estimates.

2.
Glob Chang Biol ; 28(2): 588-611, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34562049

RESUMO

High-quality atmospheric CO2  measurements are sparse in Amazonia, but can provide critical insights into the spatial and temporal variability of sources and sinks of CO2 . In this study, we present the first 6 years (2014-2019) of continuous, high-precision measurements of atmospheric CO2 at the Amazon Tall Tower Observatory (ATTO, 2.1°S, 58.9°W). After subtracting the simulated background concentrations from our observational record, we define a CO2 regional signal ( ΔCO2obs ) that has a marked seasonal cycle with an amplitude of about 4 ppm. At both seasonal and inter-annual scales, we find differences in phase between ΔCO2obs and the local eddy covariance net ecosystem exchange (EC-NEE), which is interpreted as an indicator of a decoupling between local and non-local drivers of ΔCO2obs . In addition, we present how the 2015-2016 El Niño-induced drought was captured by our atmospheric record as a positive 2σ anomaly in both the wet and dry season of 2016. Furthermore, we analyzed the observed seasonal cycle and inter-annual variability of ΔCO2obs together with net ecosystem exchange (NEE) using a suite of modeled flux products representing biospheric and aquatic CO2 exchange. We use both non-optimized and optimized (i.e., resulting from atmospheric inverse modeling) NEE fluxes as input in an atmospheric transport model (STILT). The observed shape and amplitude of the seasonal cycle was captured neither by the simulations using the optimized fluxes nor by those using the diagnostic Vegetation and Photosynthesis Respiration Model (VPRM). We show that including the contribution of CO2 from river evasion improves the simulated shape (not the magnitude) of the seasonal cycle when using a data-driven non-optimized NEE product (FLUXCOM). The simulated contribution from river evasion was found to be 25% of the seasonal cycle amplitude. Our study demonstrates the importance of the ATTO record to better understand the Amazon carbon cycle at various spatial and temporal scales.


Assuntos
Dióxido de Carbono , Ecossistema , Ciclo do Carbono , Rios , Estações do Ano
3.
PLoS One ; 15(1): e0228106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31978112

RESUMO

We conducted regional scale CO2 simulations using the Weather Research and Forecasting model (WRF) coupled with the Vegetation Photosynthesis and Respiration Model (VPRM). We contrasted simulated concentrations with column, ground and aircraft observations during the Korea-United States Air Quality (KORUS-AQ) 2016 field campaign. Overall, WRF-VPRM slightly underestimates CO2 concentrations at ground and column monitoring sites, but it significantly underestimates at an inland tower measurement site, especially within the stable (nocturnal) boundary layer in nighttime. The model successfully captures the airborne vertical profiles but showed a large offset within the planetary boundary layer (PBL) in the areas surrounding Seoul and around the Taeahn point source emissions in the west coastal area of the Korean Peninsula. A case study flight intended to capture Chinese influence observed no clear signals of long-range transport of CO2, due mainly to the much larger magnitude of background CO2 concentrations. The calculated Net Ecosystem Exchange (NEE) with flux measurements at a tower site in the South Korean Peninsula has also been evaluated comparing with CO2 flux measurements at a flux tower site, resulting in the underestimation by less than a factor of 1.


Assuntos
Dióxido de Carbono/análise , Simulação por Computador , Previsões , Modelos Teóricos , Análise Numérica Assistida por Computador , Fotossíntese , Tempo (Meteorologia) , Aeronaves , Respiração Celular , Ritmo Circadiano , Ecossistema , Geografia , República da Coreia , Seul , Análise Espaço-Temporal , Fatores de Tempo
4.
Appl Opt ; 56(18): 5182-5197, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29047572

RESUMO

The integrated-path differential-absorption lidar CHARM-F (CO2 and CH4 Remote Monitoring-Flugzeug) was developed for the simultaneous measurement of the greenhouse gases CO2 and CH4 onboard the German research aircraft HALO (High Altitude and Long Range Research Aircraft). The purpose is to derive the weighted, column-averaged dry-air mixing ratios of the two gases with high precision and accuracy between aircraft and ground or cloud tops. This paper presents the first measurements, performed in the spring of 2015, and shows performance analyses as well as the methodology for the quantification of strong point sources applied on example cases. A measurement precision of below 0.5% for 20 km averages was found. However, individual measurements still show deviations of the absolute mixing ratios compared to corresponding data from in situ profiles. The detailed analysis of the methane point source emission rate yields plausible results (26±3 m3/min or 9.2±1.15 kt CH4 yr-1), which is in good agreement with reported numbers. In terms of CO2, a power plant emission could be identified and analyzed.

5.
Environ Pollut ; 195: 282-91, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25056588

RESUMO

Surface carbon dioxide concentrations were measured using a non-dispersive infrared carbon dioxide sensor at Lampang Rajabhat University from April to May 2013 and at the University of the Philippines-Diliman campus starting September 2013. Factors influencing the variations in these measurements were determined using multiple linear regression and a Lagrangian transport model. Air temperature and sea level pressure were the dominant meteorological factors that affect the CO2 variations. However, these factors are not enough. Surface CO2 flux and transboundary transport needs to be considered as well.


Assuntos
Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Monitoramento Ambiental , Atmosfera/química , Conceitos Meteorológicos , Oceanos e Mares , Filipinas , Temperatura , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...