Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 376(1832): 20200096, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34247504

RESUMO

The loss of recombination between sex chromosomes has occurred repeatedly throughout nature, with important implications for their subsequent evolution. Explanations for this remarkable convergence have generally invoked only adaptive processes (e.g. sexually antagonistic selection); however, there is still little evidence for these hypotheses. Here we propose a model in which recombination on sex chromosomes is lost due to the neutral accumulation of sequence divergence adjacent to (and thus, in linkage disequilibrium with) the sex determiner. Importantly, we include in our model the fact that sequence divergence, in any form, reduces the probability of recombination between any two sequences. Using simulations, we show that, under certain conditions, a region of suppressed recombination arises and expands outwards from the sex-determining locus, under purely neutral processes. Further, we show that the rate and pattern of recombination loss are sensitive to the pre-existing recombination landscape of the genome and to sex differences in recombination rates, with patterns consistent with evolutionary strata emerging under some conditions. We discuss the applicability of these results to natural systems. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.


Assuntos
Evolução Molecular , Recombinação Genética , Cromossomos Sexuais , Vertebrados/genética , Animais , Modelos Genéticos
2.
Curr Biol ; 31(6): 1277-1283.e5, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33472050

RESUMO

Evolutionary transitions from hermaphroditism to dioecy have been common in flowering plants,1,2 but recent analysis also points to frequent reversions from dioecy to hermaphroditism.2-4 Here, we use experimental evolution to expose a mechanism for such reversions, validating an explanation for the scattered phylogenetic distribution of dioecy. We removed males from dioecious populations of the wind-pollinated plant Mercurialis annua and allowed natural selection to act on the remaining females that occasionally produced male flowers; such "leaky" sex expression is common in both males and females of dioecious plants.5 Over the course of four generations, females evolved a 23-fold increase in average male flower production. This phenotypic masculinization of females coincided with the evolution of partial self-fertilization, high average seed set in the continued absence of males, and a capacity to sire progeny when males were re-introduced into their populations. Our study thus validates a mechanism for the rapid dissolution of dioecy and the evolution of functional hermaphroditism under conditions that may frequently occur during periods of low population density, repeated colonization, or range expansion.6,7 Our results illustrate the power of natural selection, acting in replicated experimental populations, to bring about transitions in the mating behavior of plants.


Assuntos
Evolução Biológica , Organismos Hermafroditas , Magnoliopsida , Filogenia , Reprodução , Solubilidade
3.
Am Nat ; 192(5): E178-E188, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30332580

RESUMO

Divergence between incipient species remains an incompletely understood process. Hybrid zones provide great research potential, reflecting natural organismal genomic interactions and gene evolution in a variety of recombinants over generations. While sex chromosomes are known evolutionary drivers of reproductive isolation, empirical population genetics has mostly examined species with heteromorphic sex chromosomes. We recently reported restricted introgression at sex-linked markers in an amphibian system with homomorphic sex chromosomes (Hyla), consistent with a large X-effect, designating a greater role of sex chromosomes in driving hybrid incompatibilities. Here, using a similar approach, we examined two hybrid zones of Palearctic green toads (Bufo viridis subgroup), involving several lineages that arose at different times and form secondary contacts. We find no evidence for differential introgression of sex-linked versus autosomal markers across both zones. This absence of large X-effects in Bufo indicates that, unlike in Hyla, hybrid incompatibilities may not result from the faster-heterogametic sex and faster-male aspects of Haldane's rule. The recent suppression of XY recombination in Hyla but not in Bufo may have driven greater divergence between Hyla sex chromosomes, causing stronger reproductive isolation. Alternatively, stronger linkage among Hyla's sex-linked markers could restrict introgression. We hypothesize that the degree of sex-specific recombination may condition the importance of homomorphic sex chromosomes in speciation.


Assuntos
Bufonidae/genética , Isolamento Reprodutivo , Animais , Feminino , Especiação Genética , Hibridização Genética , Itália , Masculino , Cromossomos Sexuais/genética
4.
PLoS One ; 11(5): e0156419, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27232626

RESUMO

Large genome size, including immense repetitive and non-coding fractions, still present challenges for capacity, bioinformatics and thus affordability of whole genome sequencing in most amphibians. Here, we test the performance of a single transcriptome to understand whether it can provide a cost-efficient resource for species with large unknown genomes. Using RNA from six different tissues from a single Palearctic green toad (Bufo viridis) specimen and Hiseq2000, we obtained 22,5 Mio reads and publish >100,000 unigene sequences. To evaluate efficacy and quality, we first use this data to identify green toad specific candidate genes, known from other vertebrates for their role in sex determination and differentiation. Of a list of 37 genes, the transcriptome yielded 32 (87%), many of which providing the first such data for this non-model anuran species. However, for many of these genes, only fragments could be retrieved. In order to allow also applications to population genetics, we further used the transcriptome for the targeted development of 21 non-anonymous microsatellites and tested them in genetic families and backcrosses. Eleven markers were specifically developed to be located on the B. viridis sex chromosomes; for eight markers we can indeed demonstrate sex-specific transmission in genetic families. Depending on phylogenetic distance, several markers, which are sex-linked in green toads, show high cross-amplification success across the anuran phylogeny, involving nine systematic anuran families. Our data support the view that single transcriptome sequencing (based on multiple tissues) provides a reliable genomic resource and cost-efficient method for non-model amphibian species with large genome size and, despite limitations, should be considered as long as genome sequencing remains unaffordable for most species.


Assuntos
Bufonidae/genética , Marcadores Genéticos/genética , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Transcriptoma , Animais , Bufonidae/fisiologia , Feminino , Amplificação de Genes , Masculino , Anotação de Sequência Molecular , Cromossomos Sexuais/genética
5.
Sci Rep ; 6: 21029, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26868373

RESUMO

Reproductive isolation is crucial for the process of speciation to progress. Sex chromosomes have been assigned a key role in driving reproductive isolation but empirical evidence from natural population processes has been restricted to organisms with degenerated sex chromosomes such as mammals and birds. Here we report restricted introgression at sex-linked compared to autosomal markers in a hybrid zone between two incipient species of European tree frog, Hyla arborea and H. orientalis, whose homologous X and Y sex chromosomes are undifferentiated. This large X-effect cannot result from the dominance or faster-X aspects of Haldane's rule, which are specific to degenerated sex chromosomes, but rather supports a role for faster-heterogametic-sex or faster-male evolutionary processes. Our data suggest a prominent contribution of undifferentiated sex chromosomes to speciation.


Assuntos
Diferenciação Sexual/genética , Cromossomo X/genética , Cromossomo Y/genética , Animais , Feminino , Masculino , Ranidae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...