Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 185(19): 5673-84, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-13129938

RESUMO

Defining the gene products that play an essential role in an organism's functional repertoire is vital to understanding the system level organization of living cells. We used a genetic footprinting technique for a genome-wide assessment of genes required for robust aerobic growth of Escherichia coli in rich media. We identified 620 genes as essential and 3,126 genes as dispensable for growth under these conditions. Functional context analysis of these data allows individual functional assignments to be refined. Evolutionary context analysis demonstrates a significant tendency of essential E. coli genes to be preserved throughout the bacterial kingdom. Projection of these data over metabolic subsystems reveals topologic modules with essential and evolutionarily preserved enzymes with reduced capacity for error tolerance.


Assuntos
Pegada de DNA/métodos , Proteínas de Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Genoma Bacteriano , Aerobiose , Aminoácidos/biossíntese , Meios de Cultura , Elementos de DNA Transponíveis , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Genes Essenciais , Mutagênese Insercional , Filogenia
2.
J Bacteriol ; 182(9): 2453-60, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10762245

RESUMO

The CD lumenal loop region of the photosystem II reaction center protein D2 contains residues involved in oxygen evolution. Since detailed structural information about this region is unavailable, an M13-based combinatorial mutagenesis approach was used to investigate structure-function relationships in this vital region of D2 in Synechocystis sp. strain PCC 6803. The CD loop coding region contains close to 100 nucleotides, and for effective mutagenesis, it was subdivided into four regions of seven to eight codons. A gain-of-function selection protocol was employed such that all mutants that were selected contained a functional D2 protein. In this way, conservation patterns of residues along with numbers and types of amino acid substitutions accommodated at each position for each set of mutants would indicate which residues in the CD loop may play important structural and functional roles. Results of this study have substantiated the importance of residues previously studied by site-directed mutagenesis such as Arg180 and His189 and have identified other previously unremarkable residues in the CD loop (such as Ser166, Phe169, and Ala170) that cannot be replaced by many other residues. In addition, the pliability of the CD loop was further tested using deletion and D1-D2 substitution constructs in M13. This showed that the length of the loop was important to its function, and in two cases, D2 could accommodate homologous sequences from D1, which forms a heterodimer with D2 in photosystem II, but not the other way around. This study of the CD loop in D2 provides valuable clues regarding the structural and functional requirements of the region.


Assuntos
Cianobactérias/genética , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Alanina/genética , Asparagina/genética , Sequência de Bases , DNA Bacteriano , Glutamina/genética , Glicina/genética , Dados de Sequência Molecular , Mutagênese , Fenilalanina/genética
3.
Biochemistry ; 38(44): 14690-6, 1999 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-10545195

RESUMO

The lumenal CD loop region of the D2 protein of photosystem II contains residues that interact with a reaction center chlorophyll and the redox-active Tyr(D). Using combinatorial mutagenesis, photoautotrophic mutants of Synechocystis sp. PCC 6803 have been generated with multiple amino acid changes in this region. The CD loop mutations were transferred into a photosystem I-less Synechocystis strain to facilitate characterization of photosystem II properties in the mutants. Most of the combinatorial photosystem I-less mutants obtained had a high yield of variable fluorescence, F(V). However, in three mutants, which shared a replacement of Phe181 by Trp, the F(V) yield was dramatically reduced although a high rate of oxygen evolution was maintained. A site-directed F181W D2 mutant shared similar properties. Picosecond time-resolved fluorescence measurements revealed that in the combinatorial F181W mutants the fluorescence lifetimes in closed and open photosystem II centers were essentially identical and were similar to the fluorescence lifetime in open centers of the control strain. These results are explained by quenching of variable fluorescence in the mutants by charge separation between Trp181 and excited reaction center chlorophyll. This reaction competes efficiently with fluorescence and nonradiative decay in closed photosystem II centers, where the lifetime of the excitation in the chlorophyll antenna is long. Thermodynamic considerations favor the formation of oxidized tryptophan and reduced chlorophyll in the quenching reaction, presumably followed by charge recombination. A possible role of tryptophan-chlorophyll charge separation in the mechanism of energy-dependent quenching of excitations in photosynthesis is discussed.


Assuntos
Clorofila/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Cianobactérias/genética , Cianobactérias/metabolismo , Metabolismo Energético , Mutagênese Sítio-Dirigida , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Espectrometria de Fluorescência , Triptofano/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...