Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38645173

RESUMO

Alcohol use disorders (AUDs) impose an enormous societal and financial burden, and world-wide, alcohol misuse is the 7th leading cause of premature death1. Despite this, there are currently only 3 FDA approved pharmacological treatments for the treatment of AUDs in the United States. The neurotensin (Nts) system has long been implicated in modulating behaviors associated with alcohol misuse. Recently, a novel compound, SBI-553, that biases the action of Nts receptor 1 (NTSR1) activation, has shown promise in preclinical models of psychostimulant misuse. Here we investigate the efficacy of this compound to alter ethanol-mediated behaviors in a comprehensive battery of experiments assessing ethanol consumption, behavioral responses to ethanol, sensitivity to ethanol, and ethanol metabolism. Additionally, we investigated behavior in avoidance and cognitive assays to monitor potential side effects of SBI-553. We find that SBI-553 reduces binge-like ethanol consumption in mice without altering avoidance behavior or novel object recognition. We also observe sex-dependent differences in physiological responses to sequential ethanol injections in mice. In rats, we show that SBI-553 attenuates sensitivity to the interoceptive effects of ethanol (using a Pavlovian drug discrimination task). Our data suggest that targeting NTSR1 signaling may be promising to attenuate alcohol misuse, and adds to a body of literature that suggests NTSR1 may be a common downstream target involved in the psychoactive effects of multiple reinforcing substances.

2.
Neuropsychopharmacology ; 49(7): 1151-1161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38418568

RESUMO

The central nucleus of the amygdala is known to play key roles in alcohol use and affect. Neurotensin neurons in the central nucleus of the amygdala have been shown to regulate alcohol drinking in male mice. However, little is known about which neurotransmitters released by these cells drive alcohol consumption or whether these cells drive alcohol consumption in female mice. Here we show that knockdown of GABA release from central amygdala neurotensin neurons using a Nts-cre-dependent vGAT-shRNA-based AAV strategy reduces alcohol drinking in male, but not female, mice. This manipulation did not impact avoidance behavior, except in a fasted novelty-suppressed feeding test, in which vGAT shRNA mice demonstrated increased latency to feed on a familiar high-value food reward, an effect driven by male mice. In contrast, vGAT shRNA female mice showed heightened sensitivity to thermal stimulation. These data show a role for GABA release from central amygdala neurotensin neurons in modulating consumption of rewarding substances in different motivational states.


Assuntos
Consumo de Bebidas Alcoólicas , Núcleo Central da Amígdala , Neurônios , Neurotensina , Ácido gama-Aminobutírico , Animais , Feminino , Masculino , Núcleo Central da Amígdala/metabolismo , Núcleo Central da Amígdala/efeitos dos fármacos , Neurotensina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/genética , Camundongos , Camundongos Endogâmicos C57BL , Caracteres Sexuais , Etanol/administração & dosagem , Etanol/farmacologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores
3.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-37745547

RESUMO

The central nucleus of the amygdala is known to play key roles in alcohol use and affect. Neurotensin neurons in the central nucleus of the amygdala have been shown to regulate alcohol drinking in male mice. However, little is known about which neurotransmitters released by these cells drive alcohol consumption or whether these cells drive alcohol consumption in female mice. Here we show that knockdown of GABA release from central amygdala neurotensin neurons using a Nts-cre-dependent vGAT-shRNA-based AAV strategy reduces alcohol drinking in male, but not female, mice. This manipulation did not impact avoidance behavior, except in a fasted novelty-suppressed feeding test, in which vGAT shRNA mice demonstrated increased latency to feed on a familiar high-value food reward, an effect driven by male mice. In contrast, vGAT shRNA female mice showed heightened sensitivity to thermal stimulation. These data show a role for GABA release from central amygdala neurotensin neurons in modulating consumption of rewarding substances in different motivational states.

4.
J Neurochem ; 166(2): 189-200, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37309600

RESUMO

The neurotensin system spans across the central nervous system, to the enteric nervous system (gut), and the periphery to govern behaviors and physiological responses that tune energy balance to maintain homeostasis. Neurotensin transmission is not only modulated by metabolic signals, neurotensin transmission itself can also impact metabolic state by exerting control over consumption, physical activity, and satiety signals. Many responses to sensory experiences and sleep processes are dictated by neurotensinergic activity via mechanisms that allow the organism to balance energy seeking and utilization to thrive in its environment. Given the broad reach neurotensin signaling has across the homeostatic landscape, understanding this system as a whole and examining new ways to target this system for therapeutic efficacy across many different conditions is necessary.


Assuntos
Sistema Nervoso Central , Neurotensina , Neurotensina/metabolismo , Sistema Nervoso Central/metabolismo , Transdução de Sinais , Receptores de Neurotensina
5.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778492

RESUMO

The endogenous opioid peptide systems are critical for analgesia, reward processing, and affect, but research on their release dynamics and function has been challenging. Here, we have developed microimmunoelectrodes (MIEs) for the electrochemical detection of opioid peptides using square-wave voltammetry. Briefly, a voltage is applied to the electrode to cause oxidation of the tyrosine residue on the opioid peptide of interest, which is detected as current. To provide selectivity to these voltammetric measurements, the carbon fiber surface of the MIE is coated with an antiserum selective to the opioid peptide of interest. To test the sensitivity of the MIEs, electrodes are immersed in solutions containing different concentrations of opioid peptides, and peak oxidative current is measured. We show that dynorphin antiserum-coated electrodes are sensitive to increasing concentrations of dynorphin in the attomolar range. To confirm selectivity, we also measured the oxidative current from exposure to tyrosine and other opioid peptides in solution. Our data show that dynorphin antiserum-coated MIEs are sensitive and selective for dynorphin with little to no oxidative current observed in met-enkephalin and tyrosine solutions. Additionally, we demonstrate the utility of these MIEs in an in vitro brain slice preparation using bath application of dynorphin as well as optogenetic activation of dynorphin release. Future work aims to use MIEs in vivo for real-time, rapid detection of endogenous opioid peptide release in awake, behaving animals.

6.
Nat Biomed Eng ; 6(6): 771-786, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34824397

RESUMO

The use of rodents to acquire understanding of the function of neural circuits and of the physiological, genetic and developmental underpinnings of behaviour has been constrained by limitations in the scalability, automation and high-throughput operation of implanted wireless neural devices. Here we report scalable and modular hardware and software infrastructure for setting up and operating remotely programmable miniaturized wireless networks leveraging Bluetooth Low Energy for the study of the long-term behaviour of large groups of rodents. The integrated system allows for automated, scheduled and real-time experimentation via the simultaneous and independent use of multiple neural devices and equipment within and across laboratories. By measuring the locomotion, feeding, arousal and social behaviours of groups of mice or rats, we show that the system allows for bidirectional data transfer from readily available hardware, and that it can be used with programmable pharmacological or optogenetic stimulation. Scalable and modular wireless-network infrastructure should facilitate the remote operation of fully automated large-scale and long-term closed-loop experiments for the study of neural circuits and animal behaviour.


Assuntos
Neurociências , Tecnologia sem Fio , Animais , Comportamento Animal , Camundongos , Optogenética , Próteses e Implantes , Ratos
7.
Sci Adv ; 5(11): eaay0418, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31701008

RESUMO

Traditionally, electronics have been designed with static form factors to serve designated purposes. This approach has been an optimal direction for maintaining the overall device performance and reliability for targeted applications. However, electronics capable of changing their shape, flexibility, and stretchability will enable versatile and accommodating systems for more diverse applications. Here, we report design concepts, materials, physics, and manufacturing strategies that enable these reconfigurable electronic systems based on temperature-triggered tuning of mechanical characteristics of device platforms. We applied this technology to create personal electronics with variable stiffness and stretchability, a pressure sensor with tunable bandwidth and sensitivity, and a neural probe that softens upon integration with brain tissue. Together, these types of transformative electronics will substantially broaden the use of electronics for wearable and implantable applications.


Assuntos
Técnicas Biossensoriais , Eletrônica , Dispositivos Eletrônicos Vestíveis , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/normas , Módulo de Elasticidade , Eletrônica/instrumentação , Eletrônica/métodos , Humanos , Masculino , Camundongos , Especificidade de Órgãos , Pressão , Sensibilidade e Especificidade , Estresse Mecânico , Temperatura
8.
Behav Brain Res ; 362: 71-76, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30639509

RESUMO

Sigma-1 (σ1) receptors have been investigated for their involvement in learning, rewarding and motivational processes, particularly as it relates to substances of abuse. Few studies have examined the effects of σ1 receptor agonists and antagonists on the rewarding and motivational properties of natural reinforcers, such as food. Studies that have investigated σ1 receptor agonists and antagonists has produced conflicting results. σ1 receptor antagonist PD144418 has been found to produce a dose-dependent attenuation of locomotor activity induced by cocaine, and by itself, does not suppress basal locomotor activity in mice. However, its effects on reward and motivation as it relates to food are unknown. The present study examined the involvement of σ1 receptors in mediating the rewarding and motivational properties of food using an operant task. The results indicated that at the highest dose (10 µmol/kg), PD144418 significantly attenuated the number of active lever responses for chow pellets but did not decrease the number of active lever responses for sucrose pellets under a fixed ratio (FR2) schedule of reinforcement. However, under a progressive ratio (PR) reinforcement schedule, 10 µmol/kg of PD14418 significantly reduced the breakpoint, a measure indicative of effort or motivation, for both chow and sucrose pellets. When ad libitum chow or sucrose pellets were made freely available (i.e. no lever press required) inside the operant chamber, 10 µmol/kg, PD144418 did not have an effect on number of pellets consumed. These findings indicate that PD144418 reduces the motivational effort of a food reinforced behavior.


Assuntos
Comportamento Animal/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Isoxazóis/farmacologia , Piridinas/farmacologia , Receptores sigma/antagonistas & inibidores , Animais , Cocaína/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Motivação/efeitos dos fármacos , Ratos Sprague-Dawley , Reforço Psicológico , Recompensa , Receptor Sigma-1
9.
Behav Brain Res ; 359: 95-103, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30392852

RESUMO

Considering the current obesity epidemic is due in large part to an energy imbalance, it is crucial to explore biological mechanisms that mediate palatable high energy food intake and physical activity behavior levels. Previous research demonstrates a unique sex dependent influence of physical activity on diet preference, specifically changes in palatable high-fat diet intake. Therefore, factors of motivation may be underlying the differential effect of physical activity in male and female rats on their diet preference. The present study extends this hypothesis by assessing diet preference in male and female Wistar rats selectively bred for high (HVR) and low (LVR) levels of voluntary wheel running distances. HVR and LVR rats were housed under either sedentary (SED) or voluntary wheel running access (RUN) conditions for the duration of the study. Following a 1 week acclimation period to these conditions, standard chow was replaced with concurrent ad libitum access to a choice of 3 pelleted diets (high-fat, high-sucrose, and high-corn starch); all 3 were provided in the home cage. Body weight, running distance, and intake of each diet was measured daily. At the conclusion of the 4 week diet preference test, animals were sacrificed and ventral striatum tissue was collected for later analysis. Results demonstrated intake patterns of diets were uniquely influenced by physical activity dependent on both the sex and the selectively bred line of rat. In addition, reward related ventral striatal mRNA expression was also dependent on both the sex and the selectively bred line of rat. Overall, the pattern of both behavioral and mRNA results suggest that voluntary wheel running behavior differentially mediates palatable diet consumption in males and females. Considering the pervasive abundance of both physical inactivity, combined with over-consumption of energy dense palatable diets, it is vital to understand the nature of these behavioral interactions.


Assuntos
Preferências Alimentares , Atividade Motora , Corrida , Animais , Peso Corporal , Dieta Hiperlipídica , Sacarose Alimentar , Ingestão de Alimentos/fisiologia , Feminino , Preferências Alimentares/fisiologia , Masculino , Atividade Motora/fisiologia , RNA Mensageiro/metabolismo , Ratos Wistar , Recompensa , Corrida/fisiologia , Comportamento Sedentário , Seleção Artificial , Fatores Sexuais , Especificidade da Espécie , Amido , Estriado Ventral/metabolismo , Volição
10.
Sci Rep ; 7(1): 15865, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29158567

RESUMO

Patients with interstitial cystitis/bladder pain syndrome (IC/BPS) suffer from chronic pain that severely affects quality of life. Although the underlying pathophysiology is not well understood, inhibition of bladder sensory afferents temporarily relieves pain. Here, we explored the possibility that optogenetic inhibition of nociceptive sensory afferents could be used to modulate bladder pain. The light-activated inhibitory proton pump Archaerhodopsin (Arch) was expressed under control of the sensory neuron-specific sodium channel (sns) gene to selectively silence these neurons. Optically silencing nociceptive sensory afferents significantly blunted the evoked visceromotor response to bladder distension and led to small but significant changes in bladder function. To study of the role of nociceptive sensory afferents in freely behaving mice, we developed a fully implantable, flexible, wirelessly powered optoelectronic system for the long-term manipulation of bladder afferent expressed opsins. We found that optogenetic inhibition of nociceptive sensory afferents reduced both ongoing pain and evoked cutaneous hypersensitivity in the context of cystitis, but had no effect in uninjured, naïve mice. These results suggest that selective optogenetic silencing of nociceptive bladder afferents may represent a potential future therapeutic strategy for the treatment of bladder pain.


Assuntos
Hiperalgesia/fisiopatologia , Dor Nociceptiva/fisiopatologia , Dor Pélvica/fisiopatologia , Bexiga Urinária/fisiopatologia , Vias Aferentes/metabolismo , Animais , Proteínas Arqueais/genética , Cistite Intersticial/genética , Cistite Intersticial/fisiopatologia , Gânglios Espinais , Humanos , Hiperalgesia/genética , Camundongos , Neurônios Aferentes/patologia , Dor Nociceptiva/genética , Optogenética/métodos , Dor Pélvica/genética , Qualidade de Vida , Canais de Sódio/genética
11.
J Neurosci ; 35(25): 9491-507, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26109671

RESUMO

Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are highly homologous yet distinct components of signal transduction pathways known to regulate cell survival and function. Recent evidence indicates an isoform-specific role for ERK2 in pain processing and peripheral sensitization. However, the function of ERK2 in primary sensory neurons has not been directly tested. To dissect the isoform-specific function of ERK2 in sensory neurons, we used mice with Cre-loxP-mediated deletion of ERK2 in Nav1.8(+) sensory neurons that are predominantly nociceptors. We find that ERK2, unlike ERK1, is required for peripheral sensitization and cold sensation. We also demonstrate that ERK2, but not ERK1, is required to preserve epidermal innervation in a subset of peptidergic neurons. Additionally, deletion of both ERK isoforms in Nav1.8(+) sensory neurons leads to neuron loss not observed with deletion of either isoform alone, demonstrating functional redundancy in the maintenance of sensory neuron survival. Thus, ERK1 and ERK2 exhibit both functionally distinct and redundant roles in sensory neurons. SIGNIFICANCE STATEMENT: ERK1/2 signaling affects sensory neuron function and survival. However, it was not clear whether ERK isoform-specific roles exist in these processes postnatally. Previous work from our laboratory suggested either functional redundancy of ERK isoforms or a predominant role for ERK2 in pain; however, the tools to discriminate between these possibilities were not available at the time. In the present study, we use new genetic knock-out lines to demonstrate that ERK2 in sensory neurons is necessary for development of inflammatory pain and for postnatal maintenance of peptidergic epidermal innervation. Interestingly, postnatal loss of both ERK isoforms leads to a profound loss of sensory neurons. Therefore, ERK1 and ERK2 display both functionally distinct and redundant roles in sensory neurons.


Assuntos
Hiperalgesia/metabolismo , Inflamação/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Western Blotting , Sobrevivência Celular/fisiologia , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...