Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842266

RESUMO

This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions. Many of the key phenomena related to the behavior of irradiated systems are very similar and can be understood based on the same fundamental theoretical principles and computational approaches. The multiscale nature of such phenomena requires the quantitative description of the radiation-induced effects occurring at different spatial and temporal scales, ranging from the atomic to the macroscopic, and the interlinks between such descriptions. The multiscale nature of the effects and the similarity of their manifestation in systems of different origins necessarily bring together different disciplines, such as physics, chemistry, biology, materials science, nanoscience, and biomedical research, demonstrating the numerous interlinks and commonalities between them. This research field is highly relevant to many novel and emerging technologies and medical applications.

2.
Chemphyschem ; : e202400129, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668824

RESUMO

This study explores the impact of thermal motion on the magnetic compass mechanism in migratory birds, focusing on the radical pair mechanism within cryptochrome photoreceptors. The coherence of radical pairs, crucial for magnetic field inference, is curbed by spin relaxation induced by intra-protein motion. Molecular dynamics simulations, density-functional-theory-based calculations, and spin dynamics calculations were employed, utilizing Bloch-Redfield-Wangsness (BRW) relaxation theory, to investigate compass sensitivity. Previous research hypothesized that European robin's cryptochrome 4a (ErCry4a) optimized intra-protein motion to minimize spin relaxation, enhancing magnetic sensing compared to the plant Arabidopsis thaliana's cryptochrome 1 (AtCry1). Different correlation times of the nuclear hyperfine coupling constants in AtCry1 and ErCry4a were indeed found, leading to distinct radical pair yields in the two species, with ErCry4a showing optimized sensitivity. However, this optimization is likely negligible in realistic spin systems with numerous nuclear spins. Beyond insights in magnetic sensing, the study presents a detailed method employing molecular dynamics simulations to assess spin relaxation effects on chemical reactions with realistically modelled protein motion, relevant for studying radical pair reactions at finite temperature.

3.
Biology (Basel) ; 13(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38666874

RESUMO

Marine fish migrate long distances up to hundreds or even thousands of kilometers for various reasons that include seasonal dependencies, feeding, or reproduction. The ability to perceive the geomagnetic field, called magnetoreception, is one of the many mechanisms allowing some fish to navigate reliably in the aquatic realm. While it is believed that the photoreceptor protein cryptochrome 4 (Cry4) is the key component for the radical pair-based magnetoreception mechanism in night migratory songbirds, the Cry4 mechanism in fish is still largely unexplored. The present study aims to investigate properties of the fish Cry4 protein in order to understand the potential involvement in a radical pair-based magnetoreception. Specifically, a computationally reconstructed atomistic model of Cry4 from the Atlantic herring (Clupea harengus) was studied employing classical molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) methods to investigate internal electron transfers and the radical pair formation. The QM/MM simulations reveal that electron transfers occur similarly to those found experimentally and computationally in Cry4 from European robin (Erithacus rubecula). It is therefore plausible that the investigated Atlantic herring Cry4 has the physical and chemical properties to form radical pairs that in turn could provide fish with a radical pair-based magnetic field compass sensor.

4.
ACS Infect Dis ; 10(2): 763-778, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38259029

RESUMO

Gram-negative bacteria possess a complex structural cell envelope that constitutes a barrier for antimicrobial peptides that neutralize the microbes by disrupting their cell membranes. Computational and experimental approaches were used to study a model outer membrane interaction with an antimicrobial peptide, melittin. The investigated membrane included di[3-deoxy-d-manno-octulosonyl]-lipid A (KLA) in the outer leaflet and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in the inner leaflet. Molecular dynamics simulations revealed that the positively charged helical C-terminus of melittin anchors rapidly into the hydrophilic headgroup region of KLA, while the flexible N-terminus makes contacts with the phosphate groups of KLA, supporting melittin penetration into the boundary between the hydrophilic and hydrophobic regions of the lipids. Electrochemical techniques confirmed the binding of melittin to the model membrane. To probe the peptide conformation and orientation during interaction with the membrane, polarization modulation infrared reflection absorption spectroscopy was used. The measurements revealed conformational changes in the peptide, accompanied by reorientation and translocation of the peptide at the membrane surface. The study suggests that melittin insertion into the outer membrane affects its permeability and capacitance but does not disturb the membrane's bilayer structure, indicating a distinct mechanism of the peptide action on the outer membrane of Gram-negative bacteria.


Assuntos
Peptídeos Antimicrobianos , Lipopolissacarídeos , Lipopolissacarídeos/química , Meliteno/química , Peptídeos/química , Bactérias Gram-Negativas/metabolismo
5.
Inorg Chem ; 63(2): 961-975, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157840

RESUMO

Transition metal complexes featuring redox-active ligands often exhibit multiple redox states, influenced by the interplay between the metal center and the ligand. This study delves into the electronic structures of two mononuclear complexes of copper with two similar redox-active urea azine ligands. The ligands differ by the replacement of an NCH3 moiety by an S atom in the ligand backbone. Experimental analysis yields pronounced electronic structural disparities between these complexes, observable in both the solution and solid phases. Conventional quantum chemical methods, such as density functional theory using different functionals (B3LYP, TPSSh, and CAM-B3LYP), remain inadequate to rationalize the observed spectroscopic anomalies. However, a multiconfigurational approach elucidates the disparate behaviors of these complexes. Multireference perturbation theory, based on complete active space self-consistent field computations, identifies Cu(I) in the case of the complex with the NCH3 containing ligands and a state with substantial Cu(II) contributions in the case of the complex with the S atom containing ligands. In contrast, DFT indicates Cu(I) in both scenarios.

6.
J Chem Inf Model ; 63(23): 7518-7528, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37983165

RESUMO

The Automated Ligand Searcher (ALISE) is designed as an automated computational drug discovery tool. To approximate the binding free energy of ligands to a receptor, ALISE includes a three-stage workflow, with each stage involving an increasingly sophisticated computational method: molecular docking, molecular dynamics, and free energy perturbation, respectively. To narrow the number of potential ligands, poorly performing ligands are gradually segregated out. The performance and usability of ALISE are benchmarked for a case study containing known active ligands and decoys for the HIV protease. The example illustrates that ALISE filters the decoys successfully and demonstrates that the automation, comprehensiveness, and user-friendliness of the software make it a valuable tool for improved and faster drug development workflows.


Assuntos
Simulação de Dinâmica Molecular , Software , Ligantes , Simulação de Acoplamento Molecular , Descoberta de Drogas , Ligação Proteica
7.
RSC Adv ; 13(37): 25752-25761, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37664205

RESUMO

Four previously undescribed drimane sesquiterpenoids were isolated from submerged cultures of the wood-inhabiting basidiomycete Dentipellis fragilis along with two compounds that were previously reported as synthetic or biotransformation compounds but not as natural products. The constitution and relative configuration of these compounds was determined based on high-resolution electrospray ionization mass spectrometry as well as by 1D and 2D nuclear magnetic resonance spectroscopy. The absolute configurations were established based on exemplary calculation of circular dichroism spectra and comparison with measured data as well as on biogenetic considerations. The biological activities of the isolated compounds were assessed in antimicrobial, cytotoxicity and neurotrophic assays. 10-Methoxycarbonyl-10-norisodrimenin (3) exhibited weak activity against the Gram-positive bacterium Staphylococcus aureus and the zygomycete Mucor hiemalis with minimal inhibitory concentrations of 66.7 µg mL-1. In addition, compound 3 showed weak inhibition of the mammalian cell line KB3.1 (human endocervical adenocarcinoma) with a half maximal inhibitory concentration of 21.2 µM. The neurotrophic activities of 15-hydroxyisodrimenin (1) and 10-carboxy-10-norisodrimenin (5) were assed in neurite outgrowth and real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) assays. When supplemented with 5 ng mL-1 nerve growth factor (NGF), the drimanes 1 and 5 induced neurite outgrowth in PC-12 (rat pheochromocytoma) cells compared to cells solely treated with NGF. As evaluated by RT-qPCR, compounds 1 and 5 also increased NGF and brain-derived neurotrophic factor expression levels in 1321N1 astrocytoma cells. Interestingly, the current study only represents the second report on neurotrophic activities of this widespread class of terpenoids. The only other available study deals with Cyathus africanus, another basidiomycete that can produce drimanes and cyathanes, but is only distantly related to Dentipellis and the Hericiaceae.

8.
Chemphyschem ; 24(17): e202300370, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326019

RESUMO

Hybrid Density Functional Theory (DFT) calculations for multiple conformers of the insertion reactions of a methylenecyclopropane into the Ti-C bond of two differently α-substituted titanaaziridines explain the experimentally observed differences in regioselectivity between catalytic hydroaminoalkylation reactions of methylenecyclopropanes with α-phenyl-substituted secondary amines and corresponding stoichiometric reactions of a methylenecyclopropane with titanaaziridines, which can only be achieved with α-unsubstituted titanaaziridines. In addition, the lack of reactivity of α-phenyl-substituted titanaaziridines as well as the diastereoselectivity of the catalytic and stoichiometric reactions can be understood.

9.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175925

RESUMO

This short review reports the surprising phenomenon of nuclear hyperpolarization occurring in chemical reactions, which is called CIDNP (chemically induced dynamic nuclear polarization) or photo-CIDNP if the chemical reaction is light-driven. The phenomenon occurs in both liquid and solid-state, and electron transfer systems, often carrying flavins as electron acceptors, are involved. Here, we explain the physical and chemical properties of flavins, their occurrence in spin-correlated radical pairs (SCRP) and the possible involvement of flavin-carrying SCRPs in animal magneto-reception at earth's magnetic field.


Assuntos
Flavoproteínas , Campos Magnéticos , Animais , Transporte de Elétrons , Flavinas/química
10.
J Comput Chem ; 44(19): 1704-1714, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37186467

RESUMO

Spin relaxation is an important aspect of the spin dynamics of free radicals and can have a significant impact on the outcome of their spin-selective reactions. Examples range from the use of radicals as spin qubits in quantum information processing to the radical pair reactions in proteins that may allow migratory birds to sense the direction of the Earth's magnetic field. Accurate modeling of spin relaxation, however, is non-trivial. Bloch-Redfield-Wangsness theory derives a quantum mechanical master equation from system-bath interactions in the Markovian limit that provides a comprehensive framework for describing spin relaxation. Unfortunately, the construction of the master equation is system-specific and often resource-heavy. To address this challenge, we introduce a generalized and efficient implementation of BRW theory as a new feature of the spin dynamics toolkit MolSpin which offers an easy-to-use approach for studying systems of reacting radicals of varying complexity.


Assuntos
Campos Magnéticos , Radicais Livres
11.
PLoS One ; 18(5): e0284736, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37186599

RESUMO

Biological processes involve movements across all measurable scales. Similarity measures can be applied to compare and analyze these movements but differ in how differences in movement are aggregated across space and time. The present study reviews frequently-used similarity measures, such as the Hausdorff distance, Fréchet distance, Dynamic Time Warping, and Longest Common Subsequence, jointly with several measures less used in biological applications (Wasserstein distance, weak Fréchet distance, and Kullback-Leibler divergence), and provides computational tools for each of them that may be used in computational biology. We illustrate the use of the selected similarity measures in diagnosing differences within two extremely contrasting sets of biological data, which, remarkably, may both be relevant for magnetic field perception by migratory birds. Specifically, we assess and discuss cryptochrome protein conformational dynamics and extreme migratory trajectories of songbirds between Alaska and Africa. We highlight how similarity measures contrast regarding computational complexity and discuss those which can be useful in noise elimination or, conversely, are sensitive to spatiotemporal scales.


Assuntos
Movimento , Aves Canoras , Animais , Conformação Proteica , Biologia Computacional , África
12.
J Am Chem Soc ; 144(50): 22902-22914, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36459632

RESUMO

The magnetic compass of migratory birds is thought to rely on a radical pair reaction inside the blue-light photoreceptor protein cryptochrome. The sensitivity of such a sensor to weak external magnetic fields is determined by a variety of magnetic interactions, including electron-nuclear hyperfine interactions. Here, we investigate the implications of thermal motion, focusing on fluctuations in the dihedral and librational angles of flavin adenine dinucleotide (FAD) and tryptophan (Trp) radicals in cryptochrome 4a from European robin (Erithacus rubecula, ErCry4a) and pigeon (Columba livia, ClCry4a) and cryptochrome 1 from the plant Arabidopsis thaliana (AtCry1). Molecular dynamics simulations and density functional theory-derived hyperfine interactions are used to calculate the quantum yield of radical pair recombination dependent on the direction of the geomagnetic field. This quantity and various dynamical parameters are compared for [FAD•- Trp•+] in ErCry4a, ClCry4a, and AtCry1, with TrpC or TrpD being the third and fourth components of the tryptophan triad/tetrad in the respective proteins. We find that (i) differences in the average dihedral angles in the radical pairs are small, (ii) the librational motions of TrpC•+ in the avian cryptochromes are appreciably smaller than in AtCry1, (iii) the rapid vibrational motions of the radicals leading to strong fluctuations in the hyperfine couplings affect the spin dynamics depending on the usage of instantaneous or time-averaged interactions. Future investigations of radical pair compass sensitivity should therefore not be based on single snapshots of the protein structure but should include the ensemble properties of the hyperfine interactions.


Assuntos
Columbidae , Criptocromos , Animais , Criptocromos/química , Columbidae/metabolismo , Triptofano/química , Flavina-Adenina Dinucleotídeo/metabolismo , Fenômenos Magnéticos , Campos Magnéticos
13.
Phys Chem Chem Phys ; 24(4): 2051-2069, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35014643

RESUMO

The photocatalytic sulfoxidation on TiO2 discovered by Parrino et al. represents a new, interesting and lower energy route for the synthesis of sulfonic acids. Sulfonic acids are important precursors for dyes, detergents and drugs. In the commonly known industrial process, SO2 and a specific hydrocarbon are converted into sulfonic acids using high-energy UV light. In this reaction, SO2 is excited into a metastable triplet state (3SO2), which has the potential to activate a CH-bond of hydrocarbons and start a radical reaction cycle. By introducing TiO2 as a photocatalyst, it has been shown that visible light can be used for the synthesis. This offers the potential to be a cost-effective reaction approach for industrial use. However, experimental studies indicate that the initial excitation mechanism of SO2 on TiO2 is significantly different from the catalyst-free mechanism. Parrino et al. were able to reveal first evidence for the existence of a charge-transfer process from SO2 to the TiO2 surface by means of electrochemical experiments. First theoretical investigations from first principles were able to further substantiate the existence of a charge-transfer. However, to fully understand this mechanism, more accurate methods such as Time Dependent Density Functional Theory (TD-DFT) or ab initio multireference methods such as the Complete Active Space Self Consistent Field (CASSCF) method are required. Furthermore, after understanding the charge-transfer mechanism, the introduction of dopants into TiO2 can be investigated in order to possibly redshift the excitation energy. This might open the route to using lower energy light for the sulfoxidation of hydrocarbons on TiO2 as a new potential industrial reaction for the synthesis of sulfonic acids. In this work, we will study the initial step of the photocatalytic sulfoxidation of hydrocarbons using the TD-DFT and CASSCF methods by using a combined approach consisting of calculations with periodic boundary conditions and a newly constructed embedded cluster model. Furthermore, we will explore the effects of doping by introducing four heteroatoms (C, N, S, and Se) into the TiO2 surfaces anatase[101] and rutile[110] to find a possible enhancement of the photocatalytic reactivity by lowering the electronic excitation energy.

14.
Chemphyschem ; 21(22): 2506-2514, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-32969136

RESUMO

Multinuclear transition metal complexes bridged by ligands with extended π-electronic systems show a variety of complex electronic transitions and electron transfer reactions. While a systematic understanding of the photochemistry and electrochemistry has been attained for binuclear complexes, much less is known about trinuclear complexes such as hexaphenyl-5,6,11,12,17,18-hexaazatrinaphthylene-tristitanocene [(Cp2 Ti)3 HATN(Ph)6 ]. The voltammogram of [(Cp2 Ti)3 HATN(Ph)6 ] shows six oxidation and three reduction waves. Solution spectra of [(Cp2 Ti)3 HATN(Ph)6 ] and of the electrochemically formed oxidation products show electronic transitions in the UV, visible and the NIR ranges. Density functional theory (DFT) and linear response time-dependent DFT show that the three formally titanium(II) centers transfer an electron to the HATN ligand in the ground state. The optically excited transitions occur exclusively between ligand-centered orbitals. The charged titanium centers only provide an electrostatic frame to the extended π-electronic system. Complete active self-consistent field (CASSCF) calculation on a structurally simplified model compound, which considers the multi-reference character imposed by the three titanium centers, can provide an interpretation of the experimentally observed temperature-dependent magnetic behavior of the different redox states of the title compound in full consistency with the interpretation of the electronic spectra.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...