Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(46): 13463-13467, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38033887

RESUMO

Twenty oxygenated aristolochene congeners were rapidly synthesised by combining genes from four different fungal pathways in the fungal host organism Aspergillus oryzae. Compounds produced in a single step include the natural product hypoxylan A and an epimer of guignaderemophilane C. A new fungal aromatase was discovered that produces phenols by oxidative demethylation.

2.
mBio ; : e0262823, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37982619

RESUMO

IMPORTANCE: An overexpression screen of 228 zinc cluster transcription factor encoding genes of A. fumigatus revealed 11 genes conferring increased tolerance to antifungal drugs. Out of these, four oxidative stress and drug tolerance transcription factor encoding odr genes increased tolerance to oxidative stress and antifungal drugs when overexpressed. This supports a correlation between oxidative stress response and antifungal drug tolerance in A. fumigatus. OdrA/Mdu2 is required for the cross-tolerance between azoles, polyenes, and oxidative stress and activates genes for detoxification. Under oxidative stress conditions or when overexpressed, OdrA/Mdu2 accumulates in the nucleus and activates detoxifying genes by direct binding at their promoters, as we describe with the mdr1 gene encoding an itraconazole specific efflux pump. Finally, this work gives new insights about drug and stress resistance in the opportunistic pathogenic fungus A. fumigatus.

3.
Elife ; 102021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34635205

RESUMO

Fungal Hülle cells with nuclear storage and developmental backup functions are reminiscent of multipotent stem cells. In the soil, Hülle cells nurse the overwintering fruiting bodies of Aspergillus nidulans. The genome of A. nidulans harbors genes for the biosynthesis of xanthones. We show that enzymes and metabolites of this biosynthetic pathway accumulate in Hülle cells under the control of the regulatory velvet complex, which coordinates development and secondary metabolism. Deletion strains blocked in the conversion of anthraquinones to xanthones accumulate emodins and are delayed in maturation and growth of fruiting bodies. Emodin represses fruiting body and resting structure formation in other fungi. Xanthones are not required for sexual development but exert antifeedant effects on fungivorous animals such as springtails and woodlice. Our findings reveal a novel role of Hülle cells in establishing secure niches for A. nidulans by accumulating metabolites with antifeedant activity that protect reproductive structures from animal predators.


Assuntos
Artrópodes , Aspergillus nidulans/metabolismo , Comportamento Alimentar , Proteínas Fúngicas/metabolismo , Comportamento Predatório , Metabolismo Secundário , Microbiologia do Solo , Esporos Fúngicos/metabolismo , Animais , Antraquinonas/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/crescimento & desenvolvimento , Crustáceos , Proteínas Fúngicas/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Fúngica da Expressão Gênica , Mutação , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Tenebrio , Fatores de Tempo , Xantonas/metabolismo
4.
Front Mol Neurosci ; 14: 659926, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912013

RESUMO

Aggregation of α-synuclein (αSyn) into proteinaceous deposits is a pathological hallmark of a range of neurodegenerative diseases including Parkinson's disease (PD). Numerous lines of evidence indicate that the accumulation of toxic oligomeric and prefibrillar αSyn species may underpin the cellular toxicity and spread of pathology between cells. Therefore, aggregation of αSyn is considered a priority target for drug development, as aggregation inhibitors are expected to reduce αSyn toxicity and serve as therapeutic agents. Here, we used the budding yeast S. cerevisiae as a platform for the identification of short peptides that inhibit αSyn aggregation and toxicity. A library consisting of approximately one million peptide variants was utilized in two high-throughput screening approaches for isolation of library representatives that reduce αSyn-associated toxicity and aggregation. Seven peptides were isolated that were able to suppress specifically αSyn toxicity and aggregation in living cells. Expression of the peptides in yeast reduced the accumulation of αSyn-induced reactive oxygen species and increased cell viability. Next, the peptides were chemically synthesized and probed for their ability to modulate αSyn aggregation in vitro. Two synthetic peptides, K84s and K102s, of 25 and 19 amino acids, respectively, significantly inhibited αSyn oligomerization and aggregation at sub-stoichiometric molar ratios. Importantly, K84s reduced αSyn aggregation in human cells. These peptides represent promising αSyn aggregation antagonists for the development of future therapeutic interventions.

5.
PLoS Genet ; 17(3): e1009434, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33720931

RESUMO

The conserved fungal velvet family regulatory proteins link development and secondary metabolite production. The velvet domain for DNA binding and dimerization is similar to the structure of the Rel homology domain of the mammalian NF-κB transcription factor. A comprehensive study addressed the functions of all four homologs of velvet domain encoding genes in the fungal life cycle of the soil-borne plant pathogenic fungus Verticillium dahliae. Genetic, cell biological, proteomic and metabolomic analyses of Vel1, Vel2, Vel3 and Vos1 were combined with plant pathogenicity experiments. Different phases of fungal growth, development and pathogenicity require V. dahliae velvet proteins, including Vel1-Vel2, Vel2-Vos1 and Vel3-Vos1 heterodimers, which are already present during vegetative hyphal growth. The major novel finding of this study is that Vel1 is necessary for initial plant root colonization and together with Vel3 for propagation in planta by conidiation. Vel1 is needed for disease symptom induction in tomato. Vel1, Vel2, and Vel3 control the formation of microsclerotia in senescent plants. Vel1 is the most important among all four V. dahliae velvet proteins with a wide variety of functions during all phases of the fungal life cycle in as well as ex planta.


Assuntos
Proteínas Fúngicas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Esporos Fúngicos , Verticillium/fisiologia , Xilema/metabolismo , Proteínas de Ligação a DNA , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno , Solanum lycopersicum , Modelos Biológicos , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Metabolismo Secundário
6.
Microbiol Resour Announc ; 10(9)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664139

RESUMO

Saccharomyces cerevisiae is an industrially preferred cell factory for the heterologous production of proteins and chemicals. Here, we present the draft genome sequence of the laboratory strain Saccharomyces cerevisiae LW2591Y, which has been designed for robust and efficient assembly of multigene pathways.

7.
Front Fungal Biol ; 2: 777474, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37744088

RESUMO

The soil microbiome comprises numerous filamentous fungi and bacteria that mutually react and challenge each other by the production of bioactive secondary metabolites. Herein, we show in liquid co-cultures that the presence of filamentous Streptomycetes producing antifungal glycopeptide antibiotics induces the production of the antibacterial and iron-chelating tropolones anhydrosepedonin (1) and antibiotic C (2) in the mold Aspergillus nidulans. Additionally, the biosynthesis of the related polyketide tripyrnidone (5) was induced, whose novel tricyclic scaffold we elucidated by NMR and HRESIMS data. The corresponding biosynthetic polyketide synthase-encoding gene cluster responsible for the production of these compounds was identified. The tropolones as well as tripyrnidone (5) are produced by genes that belong to the broad reservoir of the fungal genome for the synthesis of different secondary metabolites, which are usually silenced under standard laboratory conditions. These molecules might be part of the bacterium-fungus competition in the complex soil environment, with the bacterial glycopeptide antibiotic as specific environmental trigger for fungal induction of this cluster.

8.
Front Bioeng Biotechnol ; 8: 582052, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102464

RESUMO

Monoterpenoids, such as the plant metabolite geraniol, are of high industrial relevance since they are important fragrance materials for perfumes, cosmetics, and household products. Chemical synthesis or extraction from plant material for industry purposes are complex, environmentally harmful or expensive and depend on seasonal variations. Heterologous microbial production offers a cost-efficient and sustainable alternative but suffers from low metabolic flux of the precursors and toxicity of the monoterpenoid to the cells. In this study, we evaluated two approaches to counteract both issues by compartmentalizing the biosynthetic enzymes for geraniol to the peroxisomes of Saccharomyces cerevisiae as production sites and by improving the geraniol tolerance of the yeast cells. The combination of both approaches led to an 80% increase in the geraniol titers. In the future, the inclusion of product tolerance and peroxisomal compartmentalization into the general chassis engineering toolbox for monoterpenoids or other host-damaging, industrially relevant metabolites may lead to an efficient, low-cost, and eco-friendly microbial production for industrial purposes.

9.
mBio ; 11(4)2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32788382

RESUMO

Some aspergilli are among the most cosmopolitan and ecologically dominant fungal species. One pillar of their success is their complex life cycle, which creates specialized cell types for versatile dispersal and regenesis. One of these cell types is unique to aspergilli-the Hülle cells. Despite being known for over a century, the biological and ecological roles of Hülle cells remain largely speculative. Previously reported data on in vivo Hülle cell formation and localization have been conflicting. Our quantification reveals that Hülle cells can occur at all locations on hyphae and that they show cellular activity similar to that seen with adjacent hyphae, indicating that they develop as intricate parts of hyphal tissue. In addition, we show that during sexual development associated with two parental strains, the typically multinucleate Hülle cells can inherit nuclei from both parents, indicating that they may serve as genetic backups. We provide an easy, reproducible method to study Hülle cell biology and germination with which we investigate the 90-year-old puzzle of whether and how Hülle cells germinate. We present clear evidence for the germination of Hülle cells, and we show that Hülle cells grow hyphae that develop into a spore-producing colony. Finally, we show that Hülle cell-derived colonies produce conidiospores faster than spore-derived colonies, providing evidence for an as-yet-undescribed developmental shortcut program in Aspergillus nidulans We propose that Hülle cells represent a unique cell type as specialized hypha-derived sexual tissue with a nucleus storage function and may act as fungal backup stem cells under highly destructive conditions.IMPORTANCE The in vivo identification of Hülle cells in cases of aspergillosis infections in animals and humans illustrates their biological relevance and suggests that they might be involved in pathogenicity. It is striking that aspergilli have developed and maintained a multinucleate nurse cell that is presumably energy-intensive to produce and is usually found only in higher eukaryotes. Our findings shed light on how the understudied Hülle cells might contribute to the success of aspergilli by acting not only as nurse cells under detrimental conditions (sexual development) but also as fungal backup stem cells with the capacity to produce genetically diverse spores in an accelerated manner, thereby substantially contributing to survival in response to predator attack or under otherwise severely destructive conditions. Our study solved the 90-year-old puzzle of Hülle cell germination and provides easy, reproducible methods that will facilitate future studies on biological and ecological roles of Hülle cells in aspergilli.


Assuntos
Aspergillus nidulans/citologia , Aspergillus nidulans/fisiologia , Proteínas Fúngicas/metabolismo , Hifas/citologia , Aspergillus nidulans/genética , Núcleo Celular/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Hifas/fisiologia , Células-Tronco Multipotentes/citologia , Esporos Fúngicos/crescimento & desenvolvimento
12.
mBio ; 10(3)2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213557

RESUMO

E3 cullin-RING ubiquitin ligase (CRL) complexes recognize specific substrates and are activated by covalent modification with ubiquitin-like Nedd8. Deneddylation inactivates CRLs and allows Cand1/A to bind and exchange substrate recognition subunits. Human as well as most fungi possess a single gene for the receptor exchange factor Cand1, which is split and rearranged in aspergilli into two genes for separate proteins. Aspergillus nidulans CandA-N blocks the neddylation site, and CandA-C inhibits the interaction to the adaptor/substrate receptor subunits similar to the respective N-terminal and C-terminal parts of single Cand1. The pathogen Aspergillus fumigatus and related species express a CandA-C with a 190-amino-acid N-terminal extension domain encoded by an additional exon. This extension corresponds in most aspergilli, including A. nidulans, to a gene directly upstream of candA-C encoding a 20-kDa protein without human counterpart. This protein was named CandA-C1, because it is also required for the cellular deneddylation/neddylation cycle and can form a trimeric nuclear complex with CandA-C and CandA-N. CandA-C and CandA-N are required for asexual and sexual development and control a distinct secondary metabolism. CandA-C1 and the corresponding domain of A. fumigatus control spore germination, vegetative growth, and the repression of additional secondary metabolites. This suggests that the dissection of the conserved Cand1-encoding gene within the genome of aspergilli was possible because it allowed the integration of a fungus-specific protein required for growth into the CandA complex in two different gene set versions, which might provide an advantage in evolution.IMPORTANCEAspergillus species are important for biotechnological applications, like the production of citric acid or antibacterial agents. Aspergilli can cause food contamination or invasive aspergillosis to immunocompromised humans or animals. Specific treatment is difficult due to limited drug targets and emerging resistances. The CandA complex regulates, as a receptor exchange factor, the activity and substrate variability of the ubiquitin labeling machinery for 26S proteasome-mediated protein degradation. Only Aspergillus species encode at least two proteins that form a CandA complex. This study shows that Aspergillus species had to integrate a third component into the CandA receptor exchange factor complex that is unique to aspergilli and required for vegetative growth, sexual reproduction, and activation of the ubiquitin labeling machinery. These features have interesting implications for the evolution of protein complexes and could make CandA-C1 an interesting candidate for target-specific drug design to control fungal growth without affecting the human ubiquitin-proteasome system.


Assuntos
Aspergillus nidulans/enzimologia , Aspergillus nidulans/genética , Proteínas Culina/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ubiquitina-Proteína Ligases/genética , Complexos Multiproteicos , Ubiquitina/metabolismo
14.
PLoS Genet ; 14(7): e1007511, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30044771

RESUMO

The NF-κB-like velvet domain protein VosA (viability of spores) binds to more than 1,500 promoter sequences in the filamentous fungus Aspergillus nidulans. VosA inhibits premature induction of the developmental activator gene brlA, which promotes asexual spore formation in response to environmental cues as light. VosA represses a novel genetic network controlled by the sclB gene. SclB function is antagonistic to VosA, because it induces the expression of early activator genes of asexual differentiation as flbC and flbD as well as brlA. The SclB controlled network promotes asexual development and spore viability, but is independent of the fungal light control. SclB interactions with the RcoA transcriptional repressor subunit suggest additional inhibitory functions on transcription. SclB links asexual spore formation to the synthesis of secondary metabolites including emericellamides, austinol as well as dehydroaustinol and activates the oxidative stress response of the fungus. The fungal VosA-SclB regulatory system of transcription includes a VosA control of the sclB promoter, common and opposite VosA and SclB control functions of fungal development and several additional regulatory genes. The relationship between VosA and SclB illustrates the presence of a convoluted surveillance apparatus of transcriptional control, which is required for accurate fungal development and the linkage to the appropriate secondary metabolism.


Assuntos
Aspergillus nidulans/fisiologia , Proteínas Fúngicas/genética , Estresse Oxidativo/genética , Reprodução Assexuada/genética , Metabolismo Secundário/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Redes Reguladoras de Genes/fisiologia , Genes Fúngicos/genética , Regiões Promotoras Genéticas/genética , Domínios Proteicos/fisiologia , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/fisiologia
15.
PLoS Pathog ; 11(11): e1005205, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26529322

RESUMO

The transcription factor Flo8/Som1 controls filamentous growth in Saccharomyces cerevisiae and virulence in the plant pathogen Magnaporthe oryzae. Flo8/Som1 includes a characteristic N-terminal LUG/LUH-Flo8-single-stranded DNA binding (LUFS) domain and is activated by the cAMP dependent protein kinase A signaling pathway. Heterologous SomA from Aspergillus fumigatus rescued in yeast flo8 mutant strains several phenotypes including adhesion or flocculation in haploids and pseudohyphal growth in diploids, respectively. A. fumigatus SomA acts similarly to yeast Flo8 on the promoter of FLO11 fused with reporter gene (LacZ) in S. cerevisiae. FLO11 expression in yeast requires an activator complex including Flo8 and Mfg1. Furthermore, SomA physically interacts with PtaB, which is related to yeast Mfg1. Loss of the somA gene in A. fumigatus resulted in a slow growth phenotype and a block in asexual development. Only aerial hyphae without further differentiation could be formed. The deletion phenotype was verified by a conditional expression of somA using the inducible Tet-on system. A adherence assay with the conditional somA expression strain indicated that SomA is required for biofilm formation. A ptaB deletion strain showed a similar phenotype supporting that the SomA/PtaB complex controls A. fumigatus biofilm formation. Transcriptional analysis showed that SomA regulates expression of genes for several transcription factors which control conidiation or adhesion of A. fumigatus. Infection assays with fertilized chicken eggs as well as with mice revealed that SomA is required for pathogenicity. These data corroborate a complex control function of SomA acting as a central factor of the transcriptional network, which connects adhesion, spore formation and virulence in the opportunistic human pathogen A. fumigatus.


Assuntos
Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Magnaporthe/patogenicidade , Fatores de Transcrição/metabolismo , Animais , Aspergillus fumigatus/genética , Proteínas Fúngicas/genética , Humanos , Hifas/genética , Magnaporthe/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Virulência
16.
Appl Microbiol Biotechnol ; 98(20): 8443-55, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25142695

RESUMO

Fungal genomics revealed a large potential of yet-unexplored secondary metabolites, which are not produced during vegetative growth. The discovery of novel bioactive compounds is increasingly gaining importance. The high number of resistances against established antibiotics requires novel drugs to counteract increasing human and animal mortality rates. In addition, growth of plant pathogens has to be controlled to minimize harvest losses. An additional critical issue is the post-harvest production of deleterious mycotoxins. Fungal development and secondary metabolite production are linked processes. Therefore, molecular regulators of development might be suitable to discover new bioactive fungal molecules or to serve as targets to control fungal growth, development, or secondary metabolite production. The fungal impact is relevant as well for our healthcare systems as for agriculture. We propose here to use the knowledge about mutant strains discovered in fungal model systems for a broader application to detect and explore new fungal drugs or toxins. As examples, mutant strains impaired in two conserved eukaryotic regulatory complexes are discussed. The COP9 signalosome (CSN) and the velvet complex act at the interface between development and secondary metabolism. The CSN is a multi-protein complex of up to eight subunits and controls the activation of CULLIN-RING E3 ubiquitin ligases, which mark substrates with ubiquitin chains for protein degradation by the proteasome. The nuclear velvet complex consists of the velvet-domain proteins VeA and VelB and the putative methyltransferase LaeA acting as a global regulator for secondary metabolism. Defects in both complexes disturb fungal development, light perception, and the control of secondary metabolism. The potential biotechnological relevance of these developmental fungal mutant strains for drug discovery, agriculture, food safety, and human healthcare is discussed.


Assuntos
Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Fungos/metabolismo , Engenharia Metabólica/métodos , Metabolismo Secundário , Biotecnologia/métodos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/genética , Fungos/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica , Redes e Vias Metabólicas/genética , Mutação
17.
PLoS Biol ; 11(12): e1001750, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24391470

RESUMO

Morphological development of fungi and their combined production of secondary metabolites are both acting in defence and protection. These processes are mainly coordinated by velvet regulators, which contain a yet functionally and structurally uncharacterized velvet domain. Here we demonstrate that the velvet domain of VosA is a novel DNA-binding motif that specifically recognizes an 11-nucleotide consensus sequence consisting of two motifs in the promoters of key developmental regulatory genes. The crystal structure analysis of the VosA velvet domain revealed an unforeseen structural similarity with the Rel homology domain (RHD) of the mammalian transcription factor NF-κB. Based on this structural similarity several conserved amino acid residues present in all velvet domains have been identified and shown to be essential for the DNA binding ability of VosA. The velvet domain is also involved in dimer formation as seen in the solved crystal structures of the VosA homodimer and the VosA-VelB heterodimer. These findings suggest that defence mechanisms of both fungi and animals might be governed by structurally related DNA-binding transcription factors.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica/fisiologia , NF-kappa B/genética , Aspergillus nidulans/genética , Aspergillus nidulans/fisiologia , Sequência Consenso/genética , Sequência Consenso/fisiologia , DNA Fúngico/genética , DNA Fúngico/fisiologia , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Fúngica da Expressão Gênica/genética , Genes Fúngicos/genética , Genes Fúngicos/fisiologia , Genes rel/genética , Genes rel/fisiologia , NF-kappa B/fisiologia
18.
Appl Environ Microbiol ; 78(23): 8234-44, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23001671

RESUMO

The genomes of filamentous fungi comprise numerous putative gene clusters coding for the biosynthesis of chemically and structurally diverse secondary metabolites (SMs), which are rarely expressed under laboratory conditions. Previous approaches to activate these genes were based primarily on artificially targeting the cellular protein synthesis apparatus. Here, we applied an alternative approach of genetically impairing the protein degradation apparatus of the model fungus Aspergillus nidulans by deleting the conserved eukaryotic csnE/CSN5 deneddylase subunit of the COP9 signalosome. This defect in protein degradation results in the activation of a previously silenced gene cluster comprising a polyketide synthase gene producing the antibiotic 2,4-dihydroxy-3-methyl-6-(2-oxopropyl)benzaldehyde (DHMBA). The csnE/CSN5 gene is highly conserved in fungi, and therefore, the deletion is a feasible approach for the identification of new SMs.


Assuntos
Aspergillus nidulans/genética , Produtos Biológicos/metabolismo , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Família Multigênica , Aspergillus nidulans/metabolismo , Complexo do Signalossomo COP9 , Deleção de Genes , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo
19.
Fungal Genet Biol ; 49(6): 443-54, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22561085

RESUMO

The filamentous fungus Aspergillus nidulans carries a single gene for the S-adenosylmethionine (SAM) synthetase SasA, whereas many other organisms possess multiple SAM synthetases. The conserved enzyme catalyzes the reaction of methionine and ATP to the ubiquitous methyl group donor SAM. SAM is the main methyl group donor for methyltransferases to modify DNA, RNA, protein, metabolites, or phospholipid target substrates. We show here that the single A. nidulans SAM synthetase encoding gene sasA is essential. Overexpression of sasA, encoding a predominantly cytoplasmic protein, led to impaired development including only small sterile fruiting bodies which are surrounded by unusually pigmented auxiliary Hülle cells. Hülle cells are the only fungal cell type which does not contain significant amounts of SasA. Sterigmatocystin production is altered when sasA is overexpressed, suggesting defects in coordination of development and secondary metabolism. SasA interacts with various metabolic proteins including methionine or mitochondrial metabolic enzymes as well as proteins involved in fungal morphogenesis. SasA interaction to histone-2B might reflect a putative epigenetic link to gene expression. Our data suggest a distinct role of SasA in coordinating fungal secondary metabolism and development.


Assuntos
Aspergillus nidulans/enzimologia , Aspergillus nidulans/crescimento & desenvolvimento , Proteínas Fúngicas/metabolismo , Metionina Adenosiltransferase/metabolismo , Esterigmatocistina/metabolismo , Sequência de Aminoácidos , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Metionina Adenosiltransferase/química , Metionina Adenosiltransferase/genética , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
20.
PLoS Genet ; 6(12): e1001226, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21152013

RESUMO

VeA is the founding member of the velvet superfamily of fungal regulatory proteins. This protein is involved in light response and coordinates sexual reproduction and secondary metabolism in Aspergillus nidulans. In the dark, VeA bridges VelB and LaeA to form the VelB-VeA-LaeA (velvet) complex. The VeA-like protein VelB is another developmental regulator, and LaeA has been known as global regulator of secondary metabolism. In this study, we show that VelB forms a second light-regulated developmental complex together with VosA, another member of the velvet family, which represses asexual development. LaeA plays a key role, not only in secondary metabolism, but also in directing formation of the VelB-VosA and VelB-VeA-LaeA complexes. LaeA controls VeA modification and protein levels and possesses additional developmental functions. The laeA null mutant results in constitutive sexual differentiation, indicating that LaeA plays a pivotal role in inhibiting sexual development in response to light. Moreover, the absence of LaeA results in the formation of significantly smaller fruiting bodies. This is due to the lack of a specific globose cell type (Hülle cells), which nurse the young fruiting body during development. This suggests that LaeA controls Hülle cells. In summary, LaeA plays a dynamic role in fungal morphological and chemical development, and it controls expression, interactions, and modification of the velvet regulators.


Assuntos
Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/efeitos da radiação , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Família Multigênica , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Luz , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...