Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 645, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802745

RESUMO

BACKGROUND: Cerebellar degeneration-related (CDR) proteins are associated with paraneoplastic cerebellar degeneration (PCD) - a rare, neurodegenerative disease caused by tumour-induced autoimmunity against neural antigens resulting in degeneration of Purkinje neurons in the cerebellum. The pathogenesis of PCD is unknown, in large part due to our limited understanding of the functions of CDR proteins. To this end, we performed an extensive, multi-omics analysis of CDR-knockout cells focusing on the CDR2L protein, to gain a deeper understanding of the properties of the CDR proteins in ovarian cancer. METHODS: Ovarian cancer cell lines lacking either CDR1, CDR2, or CDR2L were analysed using RNA sequencing and mass spectrometry-based proteomics to assess changes to the transcriptome, proteome and secretome in the absence of these proteins. RESULTS: For each knockout cell line, we identified sets of differentially expressed genes and proteins. CDR2L-knockout cells displayed a distinct expression profile compared to CDR1- and CDR2-knockout cells. Knockout of CDR2L caused dysregulation of genes involved in ribosome biogenesis, protein translation, and cell cycle progression, ultimately causing impaired cell proliferation in vitro. Several of these genes showed a concurrent upregulation at the transcript level and downregulation at the protein level. CONCLUSIONS: Our study provides the first integrative multi-omics analysis of the impact of knockout of the CDR genes, providing both new insights into the biological properties of the CDR proteins in ovarian cancer, and a valuable resource for future investigations into the CDR proteins.


Assuntos
Proliferação de Células , Técnicas de Inativação de Genes , Neoplasias Ovarianas , Proteômica , Ribossomos , Humanos , Ribossomos/metabolismo , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Proteômica/métodos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Regulação Neoplásica da Expressão Gênica , Proteoma/metabolismo , Multiômica
2.
Vis Neurosci ; 39: E004, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35534787

RESUMO

The vertebrate retina contains a large number of different types of neurons that can be distinguished by their morphological properties. Assuming that no location should be without a contribution from the circuitry and function linked to a specific type of neuron, it is expected that the dendritic trees of neurons belonging to a type will cover the retina in a regular manner. Thus, for most types of neurons, the contribution to visual processing is thought to be independent of the exact location of individual neurons across the retina. Here, we have investigated the distribution of AII amacrine cells in rat retina. The AII is a multifunctional amacrine cell found in mammals and involved in synaptic microcircuits that contribute to visual processing under both scotopic and photopic conditions. Previous investigations have suggested that AIIs are regularly distributed, with a nearest-neighbor distance regularity index of ~4. It has been argued, however, that this presumed regularity results from treating somas as points, without taking into account their actual spatial extent which constrains the location of other cells of the same type. When we simulated random distributions of cell bodies with size and density similar to real AIIs, we confirmed that the simulated distributions could not be distinguished from the distributions observed experimentally for AIIs in different regions and eccentricities of the retina. The developmental mechanisms that generate the observed distributions of AIIs remain to be investigated.


Assuntos
Células Amácrinas , Retina , Células Amácrinas/fisiologia , Animais , Corpo Celular , Mamíferos , Ratos , Retina/fisiologia , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...