Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Clin Med ; 13(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38999286

RESUMO

Background: The secretion of alarmin cytokines by epithelial cells, including thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33, initiates inflammatory cascades in asthma. However, alarmin cytokine expression in the upper airways in asthma remains largely unknown. Methods: We recruited 40 participants with asthma into four groups as per the Global Initiative for Asthma (GINA) steps (10 in each group of GINA 1/2, 3, 4, and 5). Cells were derived from nasal, buccal, and throat brushings. Intracellular cytokine expression (TSLP, IL-25, and IL-33) was assessed by flow cytometry in cytokeratin 8+ (Ck8+) epithelial cells immediately following collection. Results: TSLP was significantly increased (p < 0.001) in GINA 5 patients across nasal, buccal, and throat Ck8+ epithelial cells, while IL-25 was elevated in nasal and throat samples (p < 0.003), and IL-33 levels were variable, compared with GINA 1-4 patients. Individual GINA subgroup comparison showed that TSLP levels in nasal samples from GINA 5 patients were significantly (p = 0.03) elevated but did not differ between patients with and without nasal comorbidities. IL-25 and IL-33 (obtained from nasal, buccal, and throat samples) were not significantly different in individual groups. Conclusions: Our study demonstrates for the first time that Ck8+ nasal epithelial cells from GINA 5 asthma patients express elevated levels of TSLP.

2.
Viruses ; 15(2)2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36851770

RESUMO

Thymic stromal lymphopoietin (TSLP) is an epithelium-derived pro-inflammatory cytokine involved in lung inflammatory responses. Previous studies show conflicting observations in blood TSLP in COVID-19, while none report SARS-CoV-2 inducing TSLP expression in bronchial epithelial cells. Our objective in this study was to determine whether TSLP levels increase in COVID-19 patients and if SARS-CoV-2 induces TSLP expression in bronchial epithelial cells. Plasma cytokine levels were measured in patients hospitalized with confirmed COVID-19 and age- and sex-matched healthy controls. Demographic and clinical information from COVID-19 patients was collected. We determined associations between plasma TSLP and clinical parameters using Poisson regression. Cultured human nasal (HNEpC) and bronchial epithelial cells (NHBEs), Caco-2 cells, and patient-derived bronchial epithelial cells (HBECs) obtained from elective bronchoscopy were infected in vitro with SARS-CoV-2, and secretion as well as intracellular expression of TSLP was detected by immunofluorescence. Increased TSLP levels were detected in the plasma of hospitalized COVID-19 patients (603.4 ± 75.4 vs 997.6 ± 241.4 fg/mL, mean ± SEM), the levels of which correlated with duration of stay in hospital (ß: 0.11; 95% confidence interval (CI): 0.01-0.21). In cultured NHBE and HBECs but not HNEpCs or Caco-2 cells, TSLP levels were significantly elevated after 24 h post-infection with SARS-CoV-2 (p < 0.001) in a dose-dependent manner. Plasma TSLP in COVID-19 patients significantly correlated with duration of hospitalization, while SARS-CoV-2 induced TSLP secretion from bronchial epithelial cells in vitro. Based on our findings, TSLP may be considered an important therapeutic target for COVID-19 treatment.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Linfopoietina do Estroma do Timo , Tempo de Internação , Células CACO-2 , Tratamento Farmacológico da COVID-19 , Citocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA