Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 13: 980787, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237522

RESUMO

The juxtaglomerular niche occupied by renin cells (RCN) plays an important role in glomerular repair but the precise temporal and spatial interrelations remain unclear. This study proposes the hypothesis of a local intra-extraglomerular regenerative feedback system and establishes a new quantifiable system for RCN responses in individual glomeruli in vivo. A strictly intraglomerular two-photon laser-induced injury model was established. Labeled renin cells (RC) in transgenic renin reporter mice were fate-traced in healthy and injured glomeruli over several days by intravital microscopy and quantified via new three-dimensional image processing algorithms based on ray tracing. RC in healthy glomeruli demonstrated dynamic extraglomerular protrusions. Upon intraglomerular injury the corresponding RCN first increased in volume and then increased in area of dynamic migration up to threefold compared to their RCN. RC started migration reaching the site of injury within 3 hours and acquired a mesangial cell phenotype without losing physical RCN-contact. During intraglomerular repair only the corresponding RCN responded via stimulated neogenesis, a process of de novo differentiation of RC to replenish the RCN. Repeated continuous intravital microscopy provides a state-of-the-art tool to prove and further study the local intraglomerular RCN repair feedback system in individual glomeruli in vivo in a quantifiable manner.

2.
Redox Biol ; 57: 102473, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36182808

RESUMO

Carotid artery stenosis (CAS) develops from atherosclerotic lesions and plaques. Plaque rupture or stenosis may result in occlusion of the carotid artery. Accordingly, the asymptomatic disease becomes symptomatic, characterized by ischemic stroke or transient ischemic attacks, indicating an urgent need for better understanding of the underlying molecular mechanisms and eventually prevent symptomatic CAS. NOX4, a member of the NADPH oxidase family, has anti-atherosclerotic and anti-inflammatory properties in animal models of early atherosclerosis. We hypothesized that NOX4 mRNA expression is linked to protective mechanisms in CAS patients with advanced atherosclerotic lesions as well. Indeed, NOX4 mRNA expression is lower in patients with symptomatic CAS. A low NOX4 mRNA expression is associated with an increased risk of the development of clinical symptoms. In fact, NOX4 appears to be linked to plaque stability, apoptosis and plaque hemorrhage. This is supported by cleaved caspase-3 and glycophorin C and correlates inversely with plaque NOX4 mRNA expression. Even healing of a ruptured plaque appears to be connected to NOX4, as NOX4 mRNA expression correlates to fibrous cap collagen and is reciprocally related to MMP9 activity. In conclusion, low intra-plaque NOX4 mRNA expression is associated with an increased risk for symptomatic outcome and with reduced plaque stabilizing mechanisms suggesting protective effects of NOX4 in human advanced atherosclerosis.

3.
Membranes (Basel) ; 12(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35323756

RESUMO

The functional contribution of transient receptor potential vanilloid 4 (TRPV4) expression in maintaining human corneal endothelial cells (HCEC) homeostasis is unclear. Accordingly, we determined the effects of TRPV4 gene and protein overexpression on responses modulating the viability and survival of HCEC. Q-PCR, Western blot, FACS analyses and fluorescence single-cell calcium imaging confirmed TRPV4 gene and protein overexpression in lentivirally transduced 12V4 cells derived from their parent HCEC-12 line. Although TRPV4 overexpression did not alter the baseline transendothelial electrical resistance (TEER), its cellular capacitance (Ccl) was larger than that in its parent. Scanning electron microscopy revealed that only the 12V4 cells developed densely packed villus-like protrusions. Stimulation of TRPV4 activity with GSK1016790A (GSK101, 10 µmol/L) induced larger Ca2+ transients in the 12V4 cells than those in the parental HCEC-12. One to ten nmol/L GSK101 decreased 12V4 viability, increased cell death rates and reduced the TEER, whereas 1 µmol/L GSK101 was required to induce similar effects in the HCEC-12. However, the TRPV4 channel blocker RN1734 (1 to 30 µmol/L) failed to alter HCEC-12 and 12V4 morphology, cell viability and metabolic activity. Taken together, TRPV4 overexpression altered both the HCEC morphology and markedly lowered the GSK101 dosages required to stimulate its channel activity.

4.
Dtsch Med Wochenschr ; 147(4): e32-e40, 2022 Feb.
Artigo em Alemão | MEDLINE | ID: mdl-34921360

RESUMO

Skin-to-skin-contact presents the earliest sensory experience of men and animals. Deprivation of age-relevant touch experiences during infancy results in compromised psychosocial and biological development. The 2021 Nobel Prize in Physiology or Medicine has been awarded for the discoveries of receptors for temperature and touch. Clinical studies have demonstrated the benefit of professional salutary touch for prevention and treatment of various illnesses. However, in the present practice of medicine the application of salutary touch does not meet adequate interest. Proposing a new medical discipline "Touch Medicine" we link the findings of modern touch research to clinical medicine. The treatment of depression which we conceive primarily as a disease afflicting the body will serve as an example to demonstrate the usefulness of touch therapy. Controlled studies and systematic reviews have convincingly shown antidepressive, anxiolytic and analgesic effects of salutary touch. The effectiveness and efficacy of touch therapy has also been demonstrated in many areas such as neonatology, pediatrics, oncology, and geriatrics. We discuss the underlying mechanisms on various explanatory levels including interoceptive and oxytocinergic mechanisms as well as the role of C tactile afferent nerve fibers.


Assuntos
Medicina , Percepção do Tato , Animais , Criança , Depressão , Humanos , Prêmio Nobel , Tato/fisiologia , Percepção do Tato/fisiologia
5.
Am J Physiol Renal Physiol ; 321(3): F378-F388, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34338032

RESUMO

Developmentally heterogeneous renin-expressing cells serve as progenitors for mural, glomerular, and tubular cells during nephrogenesis and are collectively termed renin lineage cells (RLCs). In this study, we quantified different renal vascular and tubular cell types based on specific markers and assessed proliferation and de novo differentiation in the RLC population. We used kidney sections of mRenCre-mT/mG mice throughout nephrogenesis. Marker positivity was evaluated in whole digitalized sections. At embryonic day 16, RLCs appeared in the developing kidney, and the expression of all stained markers in RLCs was observed. The proliferation rate of RLCs did not differ from the proliferation rate of non-RLCs. RLCs expanded mainly by de novo differentiation (neogenesis). Fractions of RLCs originating from the stromal progenitors of the metanephric mesenchyme (renin-producing cells, vascular smooth muscle cells, and mesangial cells) decreased during nephrogenesis. In contrast, aquaporin-2-positive RLCs in the collecting duct system, which embryonically emerges almost exclusively from the ureteric bud, expanded postpartum. The cubilin-positive RLC fraction in the proximal tubule, deriving from the cap mesenchyme, remained constant. In summary, RLCs were continuously detectable in the vascular and tubular compartments of the kidney during nephrogenesis. Therein, various patterns of RLC differentiation that depend on the embryonic origin of the cells were identified.NEW & NOTEWORTHY The unifying feature of the renal renin lineage cells (RLCs) is their origin from renin-expressing progenitors. RLCs evolve to an embryologically heterogeneous large population in structures with different ancestry. RLCs are also targets for the widely used renin-angiotensin-system blockers, which modulate their phenotype. Unveiling the different differentiation patterns of RLCs in the developing kidney contributes to understanding changes in their cell fate in response to homeostatic challenges and the use of antihypertensive drugs.


Assuntos
Diferenciação Celular/fisiologia , Glomérulos Renais/metabolismo , Rim/metabolismo , Células Mesangiais/metabolismo , Renina/metabolismo , Animais , Linhagem da Célula/fisiologia , Mesoderma/metabolismo , Camundongos , Células-Tronco/metabolismo
6.
Blood ; 137(24): 3416-3427, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33619535

RESUMO

Orchestrated recruitment of neutrophils to inflamed tissue is essential during the initiation of inflammation. Inflamed areas are usually hypoxic, and adaptation to reduced oxygen pressure is typically mediated by hypoxia pathway proteins. However, it remains unclear how these factors influence the migration of neutrophils to and at the site of inflammation during their transmigration through the blood-endothelial cell barrier, as well as their motility in the interstitial space. Here, we reveal that activation of hypoxia-inducible factor 2 (HIF2α) as a result of a deficiency in HIF prolyl hydroxylase domain protein 2 (PHD2) boosts neutrophil migration specifically through highly confined microenvironments. In vivo, the increased migratory capacity of PHD2-deficient neutrophils resulted in massive tissue accumulation in models of acute local inflammation. Using systematic RNA sequencing analyses and mechanistic approaches, we identified RhoA, a cytoskeleton organizer, as the central downstream factor that mediates HIF2α-dependent neutrophil motility. Thus, we propose that the novel PHD2-HIF2α-RhoA axis is vital to the initial stages of inflammation because it promotes neutrophil movement through highly confined tissue landscapes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Movimento Celular , Microambiente Celular , Neutrófilos/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Inflamação/genética , Inflamação/metabolismo , Camundongos , Camundongos Knockout , RNA-Seq
7.
FASEB J ; 35(3): e21425, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33566443

RESUMO

Histamine-induced vascular leakage is a core process of allergic pathologies, including anaphylaxis. Here, we show that glycolysis is integral to histamine-induced endothelial barrier disruption and hyperpermeability. Histamine rapidly enhanced glycolysis in endothelial cells via a pathway that involved histamine receptor 1 and phospholipase C beta signaling. Consistently, partial inhibition of glycolysis with 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) prevented histamine-induced hyperpermeability in human microvascular endothelial cells, by abolishing the histamine-induced actomyosin contraction, focal adherens junction formation, and endothelial barrier disruption. Pharmacologic blockade of glycolysis with 3PO in mice reduced histamine-induced vascular hyperpermeability, prevented vascular leakage in passive cutaneous anaphylaxis and protected from systemic anaphylaxis. In conclusion, we elucidated the role of glycolysis in histamine-induced disruption of endothelial barrier integrity. Our data thereby point to endothelial glycolysis as a novel therapeutic target for human pathologies related to excessive vascular leakage, such as systemic anaphylaxis.


Assuntos
Permeabilidade Capilar/fisiologia , Células Endoteliais/efeitos dos fármacos , Glicólise/fisiologia , Histamina/farmacologia , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Anafilaxia/metabolismo , Anafilaxia/patologia , Animais , Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Camundongos , Fosfolipase C beta/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
F1000Res ; 9: 1372, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34290860

RESUMO

Background: Intravital microscopy is an emerging technique in life science with applications in kidney research. Longitudinal observation of (patho-)physiological processes in living mice is possible in the smallest functional unit of the kidney, a single nephron (sn). In particular, effects on glomerular filtration rate (GFR) - a key parameter of renal function - can be assessed. Methods: After intravenous injection of C57BL/6 mice with a freely filtered, non-resorbable, fluorescent dye a time series was captured by multiphoton microsopy. Filtration was observed from the glomerular capillaries to the proximal tubule (PT) and the tubular signal intensity shift was analyzed to calculate the snGFR. Results: Previous methods for this analysis relied on two manually defined measurement points in the PT and the tubular volume was merely estimated in 2D images. We extended the workflow in FIJI by adding continuous measurement of intensity along the PT in every frame of the time series. Automatic modelling of actual PT volume in a 3D dataset replaced 2D volume estimation. Subsequent data analysis in R, with a calculation of intensity shifts in every frame and normalization against tubular volume, allowed exact assessment of snGFR by linear regression. Repeated analysis of image data obtained in healthy mice showed a striking increase of reproducibility by reduction of user interaction. Conclusions: These improvements maximize the reliability of a sophisticated intravital microscopy technique for the precise assessment of snGFR, a highly relevant predictor of kidney function.


Assuntos
Microscopia Intravital , Néfrons , Animais , Taxa de Filtração Glomerular , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes
9.
Pflugers Arch ; 471(9): 1205-1217, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31388748

RESUMO

Synthesis of renin in renal renin-producing cells (RPCs) is controlled via the intracellular messenger cAMP. Interference with cAMP-mediated signaling by inducible knockout of Gs-alpha (Gsα) in RPCs of adult mice resulted in a complex adverse kidney phenotype. Therein, glomerular endothelial damage was most striking. In this study, we investigated whether Gsα knockout leads to a loss of RPCs, which itself may contribute to the endothelial injury. We compared the kidney phenotype of three RPC-specific conditional mouse lines during continuous induction of recombination. Mice expressing red fluorescent reporter protein tdTomato (tdT) in RPCs served as controls. tdT was also expressed in RPCs of the other two strains used, namely with RPC-specific Gsα knockout (Gsα mice) or with RPC-specific diphtheria toxin A expression (DTA mice, in which the RPCs should be diminished). Using immunohistological analysis, we found that RPCs decreased by 82% in the kidneys of Gsα mice as compared with controls. However, the number of tdT-positive cells was similar in the two strains, demonstrating that after Gsα knockout, the RPCs persist as renin-negative descendants. In contrast, both renin-positive and tdT-labeled cells decreased by 80% in DTA mice suggesting effective RPC ablation. Only Gsα mice displayed dysregulated endothelial cell marker expression indicating glomerular endothelial damage. In addition, a robust induction of genes involved in tissue remodelling with microvascular damage was identified in tdT-labeled RPCs isolated from Gsα mice. We concluded that Gsα/renin double-negative RPC progeny essentially contributes for the development of glomerular endothelial damage in our Gsα-deficient mice.


Assuntos
AMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Rim/metabolismo , Renina/metabolismo , Transdução de Sinais/fisiologia , Animais , Biomarcadores/metabolismo , Sistema Justaglomerular , Camundongos , Camundongos Transgênicos , Fenótipo
10.
Blood ; 134(13): 1046-1058, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31434705

RESUMO

Although bone marrow niche cells are essential for hematopoietic stem cell (HSC) maintenance, their interaction in response to stress is not well defined. Here, we used a mouse model of acute thrombocytopenia to investigate the cross talk between HSCs and niche cells during restoration of the thrombocyte pool. This process required membrane-localized stem cell factor (m-SCF) in megakaryocytes, which was regulated, in turn, by vascular endothelial growth factor A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB). HSCs and multipotent progenitors type 2 (MPP2), but not MPP3/4, were subsequently activated by a dual-receptor tyrosine kinase (RTK)-dependent signaling event, m-SCF/c-Kit and VEGF-A/vascular endothelial growth factor receptor 2 (VEGFR-2), contributing to their selective and early proliferation. Our findings describe a dynamic network of signals in response to the acute loss of a single blood cell type and reveal the important role of 3 RTKs and their ligands in orchestrating the selective activation of hematopoietic stem and progenitor cells (HSPCs) in thrombocytopenia.


Assuntos
Células-Tronco Hematopoéticas/patologia , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Trombocitopenia/patologia , Doença Aguda , Animais , Becaplermina/metabolismo , Plaquetas/metabolismo , Plaquetas/patologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-kit/metabolismo , Trombocitopenia/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
Cell Signal ; 62: 109335, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31170471

RESUMO

Immunofluorescent staining is a widespread tool in basic science to understand organ morphology and (patho-) physiology. The analysis of imaging data is often performed manually, limiting throughput and introducing human bias. Quantitative analysis is particularly challenging for organs with complex structure such as the kidney. In this study we present an approach for automatic quantification of fluorescent markers and histochemical stainings in whole organ sections using open source software. We validate our novel method in multiple typical challenges of basic kidney research and demonstrate its general relevance and applicability to other complex solid organs for a variety of different markers and stainings. Our newly developed software tool "AQUISTO", applied as a standard in primary data analysis, facilitates efficient large scale evaluation of cellular populations in various types of histological samples. Thereby it contributes to the characterization and understanding of (patho-) physiological processes.


Assuntos
Imunofluorescência/métodos , Rim/ultraestrutura , Software , Coloração e Rotulagem/métodos , Algoritmos , Corantes Fluorescentes/farmacologia , Humanos , Rim/diagnóstico por imagem
12.
PLoS One ; 13(5): e0196752, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29771991

RESUMO

Endothelial cells (EC) frequently undergo primary or secondary injury during kidney disease such as thrombotic microangiopathy or glomerulonephritis. Renin Lineage Cells (RLCs) serve as a progenitor cell niche after glomerular damage in the adult kidney. However, it is not clear whether RLCs also contribute to endothelial replenishment in the glomerulus following endothelial injury. Therefore, we investigated the role of RLCs as a potential progenitor niche for glomerular endothelial regeneration. We used an inducible tet-on triple-transgenic reporter strain mRen-rtTAm2/LC1/LacZ to pulse-label the renin-producing RLCs in adult mice. Unilateral kidney EC damage (EC model) was induced by renal artery perfusion with concanavalin/anti-concanavalin. In this model glomerular EC injury and depletion developed within 1 day while regeneration occurred after 7 days. LacZ-labelled RLCs were restricted to the juxtaglomerular compartment of the afferent arterioles at baseline conditions. In contrast, during the regenerative phase of the EC model (day 7) a subset of LacZ-tagged RLCs migrated to the glomerular tuft. Intraglomerular RLCs did not express renin anymore and did not stain for glomerular endothelial or podocyte cell markers, but for the mesangial cell markers α8-integrin and PDGFRß. Accordingly, we found pronounced mesangial cell damage parallel to the endothelial injury induced by the EC model. These results demonstrated that in our EC model RLCs are not involved in endothelial regeneration. Rather, recruitment of RLCs seems to be specific for the repair of the concomitantly damaged mesangium.


Assuntos
Linhagem da Célula/fisiologia , Glomérulos Renais/fisiologia , Regeneração/fisiologia , Renina/metabolismo , Células-Tronco/fisiologia , Microangiopatias Trombóticas/fisiopatologia , Animais , Animais Geneticamente Modificados/metabolismo , Animais Geneticamente Modificados/fisiologia , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Mesângio Glomerular/metabolismo , Mesângio Glomerular/fisiologia , Glomerulonefrite/metabolismo , Glomerulonefrite/fisiopatologia , Cadeias alfa de Integrinas/metabolismo , Glomérulos Renais/metabolismo , Células Mesangiais/metabolismo , Células Mesangiais/fisiologia , Camundongos , Podócitos/metabolismo , Podócitos/fisiologia , Células-Tronco/metabolismo , Microangiopatias Trombóticas/metabolismo
13.
J Exp Med ; 214(12): 3791-3811, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29084819

RESUMO

Mast cells (MCs) and dendritic cells (DCs) are essential innate sentinels populating host-environment interfaces. Using longitudinal intravital multiphoton microscopy of DCGFP/MCRFP reporter mice, we herein provide in vivo evidence that migratory DCs execute targeted cell-to-cell interactions with stationary MCs before leaving the inflamed skin to draining lymph nodes. During initial stages of skin inflammation, DCs dynamically scan MCs, whereas at a later stage, long-lasting interactions predominate. These innate-to-innate synapse-like contacts ultimately culminate in DC-to-MC molecule transfers including major histocompatibility complex class II (MHCII) proteins enabling subsequent ex vivo priming of allogeneic T cells with a specific cytokine signature. The extent of MHCII transfer to MCs correlates with their T cell priming efficiency. Importantly, preventing the cross talk by preceding DC depletion decreases MC antigen presenting capacity and T cell-driven inflammation. Consequently, we identify an innate intercellular communication arming resident MCs with key DC functions that might contribute to the acute defense potential during critical periods of migration-based DC absence.


Assuntos
Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Inflamação/imunologia , Inflamação/patologia , Mastócitos/imunologia , Pele/patologia , Animais , Apresentação de Antígeno/imunologia , Comunicação Celular , Movimento Celular , Forma Celular , Apresentação Cruzada/imunologia , Dermatite de Contato/imunologia , Dermatite de Contato/patologia , Dinitrofluorbenzeno , Orelha/patologia , Haptenos/imunologia , Processamento de Imagem Assistida por Computador , Camundongos Endogâmicos C57BL , Fenótipo , Linfócitos T/imunologia , Imagem com Lapso de Tempo
14.
J Am Soc Nephrol ; 28(12): 3479-3489, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28775003

RESUMO

Intracellular cAMP, the production of which is catalyzed by the α-subunit of the stimulatory G protein (Gsα), controls renin synthesis and release by juxtaglomerular (JG) cells of the kidney, but may also have relevance for the physiologic integrity of the kidney. To investigate this possibility, we generated mice with inducible knockout of Gsα in JG cells and monitored them for 6 months after induction at 6 weeks of age. The knockout mapped exclusively to the JG cells of the Gsα-deficient animals. Progressive albuminuria occurred in Gsα-deficient mice. Compared with controls expressing wild-type Gsα alleles, the Gsα-deficient mice had enlarged glomeruli with mesangial expansion, injury, and FSGS at study end. Ultrastructurally, the glomerular filtration barrier of the Gsα-deficient animals featured endothelial gaps, thickened basement membrane, and fibrin-like intraluminal deposits, which are classic signs of thrombotic microangiopathy. Additionally, we found endothelial damage in peritubular capillaries and vasa recta. Because deficiency of vascular endothelial growth factor (VEGF) results in thrombotic microangiopathy, we addressed the possibility that Gsα knockout may result in impaired VEGF production. We detected VEGF expression in JG cells of control mice, and cAMP agonists regulated VEGF expression in cultured renin-producing cells. Our data demonstrate that Gsα deficiency in JG cells of adult mice results in kidney injury, and suggest that JG cells are critically involved in the maintenance and protection of the renal microvascular endothelium.


Assuntos
Endotélio Vascular/patologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Rim/metabolismo , Renina/metabolismo , Albuminúria/patologia , Alelos , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Feminino , Deleção de Genes , Genótipo , Taxa de Filtração Glomerular , Homozigoto , Humanos , Hipertrofia , Sistema Justaglomerular/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcirculação , Fenótipo , Transdução de Sinais , Trombose/genética , Trombose/patologia , Microangiopatias Trombóticas/metabolismo , Transgenes , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Kidney Int ; 92(6): 1419-1432, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28688581

RESUMO

Renin lineage cells (RLCs) serve as a progenitor cell reservoir during nephrogenesis and after renal injury. The maintenance mechanisms of the RLC pool are still poorly understood. Since RLCs were also identified as a progenitor cell population in bone marrow we first considered that these may be their source in the kidney. However, transplantation experiments in adult mice demonstrated that bone marrow-derived cells do not give rise to RLCs in the kidney indicating their non-hematopoietic origin. Therefore we tested whether RLCs develop in the kidney through neogenesis (de novo differentiation) from cells that have never expressed renin before. We used a murine model to track neogenesis of RLCs by flow cytometry, histochemistry, and intravital kidney imaging. During nephrogenesis RLCs first appear at e14, form a distinct population at e16, and expand to reach a steady state level of 8-10% of all kidney cells in adulthood. De novo differentiated RLCs persist as a clearly detectable population through embryogenesis until at least eight months after birth. Pharmacologic stimulation of renin production with enalapril or glomerular injury induced the rate of RLC neogenesis in the adult mouse kidney by 14% or more than three-fold, respectively. Thus, the renal RLC niche is constantly filled by local de novo differentiation. This process could be stimulated consequently representing a new potential target to beneficially influence repair and regeneration after kidney injury.


Assuntos
Injúria Renal Aguda/patologia , Diferenciação Celular/fisiologia , Mesângio Glomerular/fisiologia , Regeneração/efeitos dos fármacos , Renina/metabolismo , Células-Tronco/fisiologia , Injúria Renal Aguda/induzido quimicamente , Animais , Biópsia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Transplante de Medula Óssea/métodos , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/fisiologia , Enalapril/farmacologia , Mesângio Glomerular/citologia , Mesângio Glomerular/efeitos dos fármacos , Mesângio Glomerular/patologia , Humanos , Lipopolissacarídeos/toxicidade , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/patologia , Células Mesangiais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Renina/genética , Células-Tronco/efeitos dos fármacos
16.
Diabetologia ; 57(3): 522-31, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24253203

RESUMO

AIMS/HYPOTHESIS: Islet transplantation is used therapeutically in a minority of patients with type 1 diabetes. Successful outcomes are hampered by early islet beta cell loss. The adjuvant co-transplantation of mesenchymal stromal cells (MSCs) has the promise to improve islet transplant outcome. METHODS: We used a syngeneic marginal islet mass transplantation model in a mouse model of diabetes. Mice received islets or islets plus 250,000 MSCs. Kidney subcapsule, intra-hepatic and intra-ocular islet transplantation sites were used. Apoptosis, vascularisation, beta cell proliferation, MSC differentiation and laminin levels were determined by immunohistochemical analysis and image quantification post-transplant. RESULTS: Glucose homeostasis after the transplantation of syngeneic islets was improved by the co-transplantation of MSCs together with islets under the kidney capsule (p = 0.01) and by intravenous infusion of MSCs after intra-hepatic islet transplantation (p = 0.05). MSC co-transplantation resulted in reduced islet apoptosis, with reduced numbers of islet cells positive for cleaved caspase 3 being observed 14 days post-transplant. In kidney subcapsule, but not in intra-ocular islet transplant models, we observed increased re-vascularisation rates, but not increased blood vessel density in and around islets co-transplanted with MSCs compared with islets that were transplanted alone. Co-transplantation of MSCs did not increase beta cell proliferation, extracellular matrix protein laminin production or alpha cell numbers, and there was negligible MSC transdifferentiation into beta cells. CONCLUSIONS/INTERPRETATION: Co-transplantation of MSCs may lead to improved islet function and survival in the early post-transplantation period in humans receiving islet transplantation.


Assuntos
Diabetes Mellitus Experimental/patologia , Insulina/metabolismo , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Animais , Glicemia , Proliferação de Células , Técnicas de Cocultura , Diabetes Mellitus Experimental/imunologia , Secreção de Insulina , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Transplante Isogênico
17.
Diabetes ; 62(11): 3687-96, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23929935

RESUMO

Insulin is stored within the secretory granules of pancreatic ß-cells, and impairment of its release is the hallmark of type 2 diabetes. Preferential exocytosis of newly synthesized insulin suggests that granule aging is a key factor influencing insulin secretion. Here, we illustrate a technology that enables the study of granule aging in insulinoma cells and ß-cells of knock-in mice through the conditional and unequivocal labeling of insulin fused to the SNAP tag. This approach, which overcomes the limits encountered with previous strategies based on radiolabeling or fluorescence timer proteins, allowed us to formally demonstrate the preferential release of newly synthesized insulin and reveal that the motility of cortical granules significantly changes over time. Exploitation of this approach may enable the identification of molecular signatures associated with granule aging and unravel possible alterations of granule turnover in diabetic ß-cells. Furthermore, the method is of general interest for the study of membrane traffic and aging.


Assuntos
Senescência Celular/fisiologia , Insulina/metabolismo , Vesículas Secretórias/metabolismo , Animais , Linhagem Celular , Humanos , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Camundongos , Proinsulina/metabolismo , Vesículas Secretórias/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...