Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38591467

RESUMO

The objective of this research was to develop a surface modification for the NiTi shape memory alloy, thereby enabling its long-term application in implant medicine. This was achieved through the creation of innovative multifunctional hybrid layers comprising a nanometric molecular system of silver-rutile (Ag-TiO2), known for its antibacterial properties, in conjunction with bioactive submicro- and nanosized hydroxyapatite (HAp). The multifunctional, continuous, crack-free coatings were produced using the electrophoretic deposition method (EPD) at 20 V/1 min. Structural and morphological analyses through Raman spectrometry and scanning electron microscopy (SEM) provided comprehensive insights into the obtained coating. The silver within the layer existed in the form of nanometric silver carbonates (Ag2CO3) and metallic nanosilver. Based on DTA/TG results, dilatometric measurements, and high-temperature microscopy, the heat treatment temperature for the deposited layers was set at 800 °C for 2 h. The procedures applied resulted in the creation of a new generation of materials with a distinct structure compared with the initial nanopowders. The resulting composite layer, measuring 2 µm in thickness, comprised hydroxyapatite (HAp), apatite carbonate (CHAp), metallic silver, silver oxides, Ag@C, and rutile exhibiting a defective structure. This structural characteristic contributes significantly to its heightened activity, influencing both bioactivity and biocompatibility properties.

2.
Sci Rep ; 13(1): 15384, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717040

RESUMO

Nanohydroxyapatite (nanoHAP) is widely used in bone regeneration, but there is a need to enhance its properties to provide stimuli for cell commitment and osteoconduction. This study examines the effect of calcination at 1200 °C on the physicochemical and biological properties of nanoHAP doped with magnesium (Mg2+), strontium (Sr2+), and zinc (Zn2+). A synergistic effect of dual modification on nanoHAP biological properties was investigated. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), BET analysis, Fourier-transform spectroscopy, and thermal analysis methods. Furthermore, ion release tests and in vitro biological characterization, including cytocompatibility, reactive oxygen species production, osteoconductive potential and cell proliferation, were performed. The XRD results indicate that the ion substitution of nanoHAP has no effect on the apatite structure, and after calcination, ß-tricalcium phosphate (ß-TCP) is formed as an additional phase. SEM analysis showed that calcination induces the agglomeration of particles and changes in surface morphology. A decrease in the specific surface area and in the ion release rate was observed. Combining calcination and nanoHAP ion modification is beneficial for cell proliferation and osteoblast response and provide additional stimuli for cell commitment in bone regeneration.


Assuntos
Osso e Ossos , Engenharia Tecidual , Osteoblastos , Apatitas , Regeneração Óssea
3.
Materials (Basel) ; 16(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36984016

RESUMO

This paper discusses the impact of coal abrasive materials of varied petrographic composition and claystones containing admixtures of coal matter on the surface wear of wear-resistant martensitic steels. Wear tests were conducted at a test stand for three petrographic varieties of hard coal: vitrinite, clarinite, and durinite, and five samples of claystone. These tests revealed no significant effect of the type of coal abrasive used on the value of mass loss from the surface of the wear-resistant steel samples. The reason behind the foregoing is the observed tendency of coal abrasives, irrespective of their petrographic variety, to penetrate surface irregularities, especially those attributable to previous surface treatment of the samples and the impact of wear products. The dominant forms of surface damage were surface fatigue chipping and scratches caused by the particles which detached themselves from the surface of the steel samples, as observed for all the analysed coal variants. On the surfaces of the samples seasoned in the presence of claystones, highly varied forms of damage were observed: microcutting, scaly surface cracks, delamination, and deep cracks. In these cases, it was possible that the abrasive grains had been pressed into the steel surface irregularities, but no layered forms of the pressed-in abrasive material were observed to have developed. The paper also presents a model for the formation of coal films and discusses their possible effect on wear minimisation.

4.
Materials (Basel) ; 14(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34683734

RESUMO

This work concerns the development of a method of functionalization of the surface of the biomedical Ti-6Al-7Nb alloy by producing oxide nanotubes (ONTs) with drug-eluting properties. Shaping of the morphology, microstructure, and thickness of the oxide layer was carried out by anodization in an aqueous solution of 1 M ethylene glycol with the addition of 0.2 M NH4F in the voltage range 5-100 V for 15-60 min at room temperature. The characterization of the physicochemical properties of the obtained ONTs was performed using SEM, XPS, and EDAX methods. ONTs have been shown to be composed mainly of TiO2, Al2O3, and Nb2O5. Single-walled ONTs with the largest specific surface area of 600 cm2 cm-2 can be obtained by anodization at 50 V for 60 min. The mechanism of ONT formation on the Ti-6Al-7Nb alloy was studied in detail. Gentamicin sulfate loaded into ONTs was studied using FTIR, TG, DTA, and DTG methods. Drug release kinetics was determined by UV-Vis spectrophotometry. The obtained ONTs can be proposed for use in modern implantology as carriers for drugs delivered locally in inflammatory conditions.

5.
Bioelectrochemistry ; 73(1): 5-10, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18515190

RESUMO

A new, simple and selective differential pulse voltammetry (DPV) method for the simultaneous determination of selected drugs in model solutions and spiked human urine samples with prior extraction was developed and validated. The objects of analysis were paracetamol, furosemide, dipyrone, cefazolin and dexamethasone belonging to four different therapeutic groups (antibiotics, analgesic, demulcent and diuretic). Analytical methods for the preparation of urine samples for voltammetric analysis (liquid-liquid extraction--LLE and solid-phase extraction--SPE) were worked out and optimized. Hanging mercury drop electrode (HMDE) and graphite electrode were used as working electrodes. Reference electrode was Ag|AgCl|KCl((sat.)), whereas auxiliary electrode--platinum electrode. The optimal conditions for quantitative determination were obtained in a Britton-Robinson (BR) buffer at pH 2.4. Quantification was performed by means of calibration curve and standard addition methods. The calibration curves of analysed drugs are linear within the range of concentration: 6.61-66.10, 6.05-54.42, 6.00-65.00, 4.20-33.58 and 0.51-3.06 microM for paracetamol, furosemide, dipyrone, cefazolin and dexamethasone, respectively. The levels of analysed compounds in human urine can be successfully determined using this developed method with no matrix effect.


Assuntos
Eletroquímica/métodos , Preparações Farmacêuticas/urina , Urina/química , Calibragem , Humanos , Estrutura Molecular , Preparações Farmacêuticas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...