Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235452

RESUMO

Mutational profiles of myelodysplastic syndromes (MDS) have established that a relatively small number of genetic aberrations, including SF3B1 and SRSF2 spliceosome mutations, lead to specific phenotypes and prognostic subgrouping. We performed a multi-omics factor analysis (MOFA) on two published MDS cohorts of bone marrow mononuclear cells (BMMNCs) and CD34 + cells with three data modalities (clinical, genotype, and transcriptomics). Seven different views, including immune profile, inflammation/aging, retrotransposon (RTE) expression, and cell-type composition, were derived from these modalities to identify the latent factors with significant impact on MDS prognosis. SF3B1 was the only mutation among 13 mutations in the BMMNC cohort, indicating a significant association with high inflammation. This trend was also observed to a lesser extent in the CD34 + cohort. Interestingly, the MOFA factor representing the inflammation shows a good prognosis for MDS patients with high inflammation. In contrast, SRSF2 mutant cases show a granulocyte-monocyte progenitor (GMP) pattern and high levels of senescence, immunosenescence, and malignant myeloid cells, consistent with their poor prognosis. Furthermore, MOFA identified RTE expression as a risk factor for MDS. This work elucidates the efficacy of our integrative approach to assess the MDS risk that goes beyond all the scoring systems described thus far for MDS.


Assuntos
Inflamação , Síndromes Mielodisplásicas , Síndromes Mielodisplásicas/imunologia , Síndromes Mielodisplásicas/genética , Humanos , Prognóstico , Inflamação/genética , Inflamação/imunologia , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Mutação , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Medula Óssea/imunologia , Estudos de Coortes , Retroelementos/genética
2.
Acta Neuropathol Commun ; 12(1): 95, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877600

RESUMO

MYC dysregulation is pivotal in the onset and progression of IDH-mutant gliomas, mostly driven by copy-number alterations, regulatory element alterations, or epigenetic changes. Our pilot analysis uncovered instances of relative MYC overexpression without alterations in the proximal MYC network (PMN), prompting a deeper investigation into potential novel oncogenic mechanisms. Analysing comprehensive genomics profiles of 236 "IDH-mutant 1p/19q non-co-deleted" lower-grade gliomas from The Cancer Genome Atlas, we identified somatic genomic alterations within the PMN. In tumours without PMN-alterations but with MYC-overexpression, genes correlated with MYC-overexpression were identified. Our analyses yielded that 86/236 of astrocytomas exhibited no PMN-alterations, a subset of 21/86 displaying relative MYC overexpression. Within this subset, we discovered 42 genes inversely correlated with relative MYC expression, all on 19q. Further analysis pinpointed a minimal common region at 19q13.43, encompassing 15 genes. The inverse correlations of these 15 genes with relative MYC overexpression were re-confirmed using independent scRNAseq data. Further, the micro-deleted astrocytoma subset displayed significantly higher genomic instability compared to WT cases, but lower instability compared to PMN-hit cases. This newly identified 19q micro-deletion represents a potential novel mechanism underlying MYC dysregulation in astrocytomas. Given the prominence of 19q loss in IDH-mutant gliomas, our findings bear significant implications for understanding gliomagenesis.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Deleção Cromossômica , Cromossomos Humanos Par 19 , Isocitrato Desidrogenase , Proteínas Proto-Oncogênicas c-myc , Humanos , Isocitrato Desidrogenase/genética , Astrocitoma/genética , Astrocitoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Cromossomos Humanos Par 19/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA