Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 6(1): 162, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37532884

RESUMO

Pyridoxal 5'-phosphate (PLP)-dependent enzymes utilize a vitamin B6-derived cofactor to perform a myriad of chemical transformations on amino acids and other small molecules. Some PLP-dependent enzymes, such as serine hydroxymethyltransferase (SHMT), are promising drug targets for the design of small-molecule antimicrobials and anticancer therapeutics, while others have been used to synthesize pharmaceutical building blocks. Understanding PLP-dependent catalysis and the reaction specificity is crucial to advance structure-assisted drug design and enzyme engineering. Here we report the direct determination of the protonation states in the active site of Thermus thermophilus SHMT (TthSHMT) in the internal aldimine state using room-temperature joint X-ray/neutron crystallography. Conserved active site architecture of the model enzyme TthSHMT and of human mitochondrial SHMT (hSHMT2) were compared by obtaining a room-temperature X-ray structure of hSHMT2, suggesting identical protonation states in the human enzyme. The amino acid substrate serine pathway through the TthSHMT active site cavity was tracked, revealing the peripheral and cationic binding sites that correspond to the pre-Michaelis and pseudo-Michaelis complexes, respectively. At the peripheral binding site, the substrate is bound in the zwitterionic form. By analyzing the observed protonation states, Glu53, but not His residues, is proposed as the general base catalyst, orchestrating the retro-aldol transformation of L-serine into glycine.

2.
Structure ; 30(11): 1538-1549.e3, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36265484

RESUMO

Organophosphorus (OP) compounds, including nerve agents and some pesticides, covalently bind to the catalytic serine of human acetylcholinesterase (hAChE), thereby inhibiting acetylcholine hydrolysis necessary for efficient neurotransmission. Oxime antidotes can reactivate the OP-conjugated hAChE, but reactivation efficiency can be low for pesticides, such as paraoxon (POX). Understanding structural and dynamic determinants of OP inhibition and reactivation can provide insights to design improved reactivators. Here, X-ray structures of hAChE with unaged POX, with POX and oximes MMB4 and RS170B, and with MMB4 are reported. A significant conformational distortion of the acyl loop was observed upon POX binding, being partially restored to the native conformation by oximes. Neutron vibrational spectroscopy combined with molecular dynamics simulations showed that picosecond vibrational dynamics of the acyl loop soften in the ∼20-50 cm-1 frequency range. The acyl loop structural perturbations may be correlated with its picosecond vibrational dynamics to yield more comprehensive template for structure-based reactivator design.


Assuntos
Acetilcolinesterase , Praguicidas , Humanos , Acetilcolinesterase/química , Paraoxon/química , Cristalografia por Raios X , Inibidores da Colinesterase/química , Oximas/química , Compostos Organofosforados , Nêutrons
3.
Chem Sci ; 13(34): 10057-10065, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36128223

RESUMO

Pyridoxal 5'-phosphate (PLP)-dependent enzymes have been extensively studied for their ability to fine-tune PLP cofactor electronics to promote a wide array of chemistries. Neutron crystallography offers a straightforward approach to studying the electronic states of PLP and the electrostatics of enzyme active sites, responsible for the reaction specificities, by enabling direct visualization of hydrogen atom positions. Here we report a room-temperature joint X-ray/neutron structure of aspartate aminotransferase (AAT) with pyridoxamine 5'-phosphate (PMP), the cofactor product of the first half reaction catalyzed by the enzyme. Between PMP NSB and catalytic Lys258 Nζ amino groups an equally shared deuterium is observed in an apparent low-barrier hydrogen bond (LBHB). Density functional theory calculations were performed to provide further evidence of this LBHB interaction. The structural arrangement and the juxtaposition of PMP and Lys258, facilitated by the LBHB, suggests active site preorganization for the incoming ketoacid substrate that initiates the second half-reaction.

4.
Phys Chem Chem Phys ; 24(6): 3586-3597, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35089990

RESUMO

Biomacromolecules are inherently dynamic, and their dynamics are interwoven into function. The fast collective vibrational dynamics in proteins occurs in the low picosecond timescale corresponding to frequencies of ∼5-50 cm-1. This sub-to-low THz frequency regime covers the low-amplitude collective breathing motions of a whole protein and vibrations of the constituent secondary structure elements, such as α-helices, ß-sheets and loops. We have used inelastic neutron scattering experiments in combination with molecular dynamics simulations to demonstrate the vibrational dynamics softening of HIV-1 protease, a target of HIV/AIDS antivirals, upon binding of a tight clinical inhibitor darunavir. Changes in the vibrational density of states of matching structural elements in the two monomers of the homodimeric protein are not identical, indicating asymmetric effects of darunavir on the vibrational dynamics. Three of the 11 major secondary structure elements contribute over 40% to the overall changes in the vibrational density of states upon darunavir binding. Molecular dynamics simulations informed by experiments allowed us to estimate that the altered vibrational dynamics of the protease would contribute -3.6 kcal mol-1 at 300 K, or 25%, to the free energy of darunavir binding. As HIV-1 protease drug resistance remains a concern, our results open a new avenue to help establish a direct quantitative link between protein vibrational dynamics and drug resistance.


Assuntos
Protease de HIV/química , HIV-1/enzimologia , Simulação de Dinâmica Molecular , Vibração , Nêutrons , Análise Espectral
5.
Curr Res Struct Biol ; 3: 206-215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34541552

RESUMO

Acetylcholinesterase (AChE) catalyzes hydrolysis of acetylcholine thereby terminating cholinergic nerve impulses for efficient neurotransmission. Human AChE (hAChE) is a target of nerve agent and pesticide organophosphorus compounds that covalently attach to the catalytic Ser203 residue. Reactivation of inhibited hAChE can be achieved with nucleophilic antidotes, such as oximes. Understanding structural and electrostatic (i.e. protonation states) determinants of the catalytic and reactivation processes is crucial to improve design of oxime reactivators. Here we report X-ray structures of hAChE conjugated with a reversible covalent inhibitor 4K-TMA (4K-TMA:hAChE) at 2.8 â€‹Å resolution and of 4K-TMA:hAChE conjugate with oxime reactivator methoxime, MMB4 (4K-TMA:hAChE:MMB4) at 2.6 â€‹Å resolution, both at physiologically relevant room temperature, as well as cryo-crystallographic structure of 4K-TMA:hAChE at 2.4 â€‹Å resolution. 4K-TMA acts as a substrate analogue reacting with the hydroxyl of Ser203 and generating a reversible tetrahedral hemiketal intermediate that closely resembles the first tetrahedral intermediate state during hAChE-catalyzed acetylcholine hydrolysis. Structural comparisons of room temperature with cryo-crystallographic structures of 4K-TMA:hAChE and published mAChE complexes with 4K-TMA, as well as the effect of MMB4 binding to the peripheral anionic site (PAS) of the 4K-TMA:hAChE complex, revealed only discrete, minor differences. The active center geometry of AChE, already highly evolved for the efficient catalysis, was thus indicative of only minor conformational adjustments to accommodate the tetrahedral intermediate in the hydrolysis of the neurotransmitter acetylcholine (ACh). To map protonation states in the hAChE active site gorge we collected 3.5 â€‹Å neutron diffraction data paving the way for obtaining higher resolution datasets that will be needed to determine locations of individual hydrogen atoms.

6.
J Biol Chem ; 297(3): 101007, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34324828

RESUMO

Acetylcholinesterase (EC 3.1.1.7), a key acetylcholine-hydrolyzing enzyme in cholinergic neurotransmission, is present in a variety of states in situ, including monomers, C-terminally disulfide-linked homodimers, homotetramers, and up to three tetramers covalently attached to structural subunits. Could oligomerization that ensures high local concentrations of catalytic sites necessary for efficient neurotransmission be affected by environmental factors? Using small-angle X-ray scattering (SAXS) and cryo-EM, we demonstrate that homodimerization of recombinant monomeric human acetylcholinesterase (hAChE) in solution occurs through a C-terminal four-helix bundle at micromolar concentrations. We show that diethylphosphorylation of the active serine in the catalytic gorge or isopropylmethylphosphonylation by the RP enantiomer of sarin promotes a 10-fold increase in homodimer dissociation. We also demonstrate the dissociation of organophosphate (OP)-conjugated dimers is reversed by structurally diverse oximes 2PAM, HI6, or RS194B, as demonstrated by SAXS of diethylphosphoryl-hAChE. However, binding of oximes to the native ligand-free hAChE, binding of high-affinity reversible ligands, or formation of an SP-sarin-hAChE conjugate had no effect on homodimerization. Dissociation monitored by time-resolved SAXS occurs in milliseconds, consistent with rates of hAChE covalent inhibition. OP-induced dissociation was not observed in the SAXS profiles of the double-mutant Y337A/F338A, where the active center gorge volume is larger than in wildtype hAChE. These observations suggest a key role of the tightly packed acyl pocket in allosterically triggered OP-induced dimer dissociation, with the potential for local reduction of acetylcholine-hydrolytic power in situ. Computational models predict allosteric correlated motions extending from the acyl pocket toward the four-helix bundle dimerization interface 25 Å away.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Organofosfatos/farmacologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Regulação Alostérica , Domínio Catalítico , Cromatografia em Gel , Microscopia Crioeletrônica , Dimerização , Eletroforese em Gel de Poliacrilamida , Células HEK293 , Humanos , Fosforilação , Espalhamento a Baixo Ângulo , Estereoisomerismo , Difração de Raios X
7.
ACS Omega ; 5(30): 18787-18797, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32775880

RESUMO

Protein dynamics on various time scales from femtoseconds to milliseconds impacts biological function by driving proteins to conformations conducive to ligand binding and creating functional states in enzyme catalysis. Neutron vibrational spectroscopy carried out by measuring inelastic neutron scattering from protein molecules in combination with molecular simulations has the unique ability of detecting and visualizing changes in the picosecond protein vibrational dynamics due to ligand binding. Here we present neutron vibrational spectra of a homodimeric pyridoxal 5'-phosphate-dependent enzyme, aspartate aminotransferase, obtained from the open internal aldimine and closed external aldimine conformational states. We observe that in the external aldimine state the protein structure stiffens relative to the internal aldimine state, indicating rigidified vibrational dynamics on the picosecond time scale in the low-frequency regime of 5-50 cm-1. Our molecular dynamics simulations indicate substantial changes in the picosecond dynamics of the enzyme secondary structure elements upon substrate binding, with the largest contributions from just two helices and the ß-sheet.

9.
Methods Enzymol ; 634: 257-279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32093836

RESUMO

HIV-1 protease is an essential therapeutic target for the design and development of antiviral inhibitors to treat AIDS. We used room temperature neutron crystallography to accurately determine hydrogen atom positions in several protease complexes with clinical drugs, amprenavir and darunavir. Hydrogen bonding interactions were carefully mapped to provide an unprecedented picture of drug binding to the protease target. We demonstrate that hydrogen atom positions within the enzyme catalytic site can be altered by introducing drug resistant mutations and by protonating surface residues that trigger proton transfer reactions between the catalytic Asp residues and the hydroxyl group of darunavir. When protein perdeuteration is not feasible, we validate the use of initial H/D exchange with unfolded protein and partial deuteration in pure D2O with hydrogenous glycerol to maximize deuterium incorporation into the protein, with no detrimental effects on the growth of quality crystals suitable for neutron diffraction experiments.


Assuntos
Difração de Nêutrons , Preparações Farmacêuticas , Sítios de Ligação , Cristalografia por Raios X , Protease de HIV/genética , Ligação de Hidrogênio , Prótons
10.
Methods Enzymol ; 634: 311-331, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32093838

RESUMO

Protein kinases transmit chemical signals by phosphorylating substrate proteins, thus regulating a multitude of cellular processes. cAMP-dependent protein kinase (PKA), a prototypical enzyme for the whole kinase family, has been the focus of research for several decades, however, the details of the chemical mechanism of phosphoryl group transfer have remained unknown. We used neutron crystallography to map key proton sites and hydrogen bonding interactions in the PKA catalytic subunit (PKAc) in a product complex containing adenosine diphosphate (ADP) and the phosphorylated high affinity protein kinase substrate (pPKS) peptide. To improve neutron diffraction, we deuterated PKAc allowing us to use very small crystals. In the product complex, the phosphoryl group of pPKS is protonated whereas the catalytic Asp166 is not. H/D exchange analysis of the main-chain amides and comparison with the NMR analysis of PKAc with inhibitor peptide complex revealed exchangeable amides that may distinguish the catalytic and inhibited states.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Prótons , Catálise , Modelos Moleculares , Nêutrons
11.
J Biol Chem ; 295(13): 4079-4092, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32019865

RESUMO

Organophosphate (OP) intoxications from nerve agent and OP pesticide exposures are managed with pyridinium aldoxime-based therapies whose success rates are currently limited. The pyridinium cation hampers uptake of OPs into the central nervous system (CNS). Furthermore, it frequently binds to aromatic residues of OP-inhibited acetylcholinesterase (AChE) in orientations that are nonproductive for AChE reactivation, and the structural diversity of OPs impedes efficient reactivation. Improvements of OP antidotes need to include much better access of AChE reactivators to the CNS and optimized orientation of the antidotes' nucleophile within the AChE active-center gorge. On the basis of X-ray structures of a CNS-penetrating reactivator, monoxime RS194B, reversibly bound to native and venomous agent X (VX)-inhibited human AChE, here we created seven uncharged acetamido bis-oximes as candidate antidotes. Both oxime groups in these bis-oximes were attached to the same central, saturated heterocyclic core. Diverse protonation of the heterocyclic amines and oxime groups of the bis-oximes resulted in equilibration among up to 16 distinct ionization forms, including uncharged forms capable of diffusing into the CNS and multiple zwitterionic forms optimal for reactivation reactions. Conformationally diverse zwitterions that could act as structural antidote variants significantly improved in vitro reactivation of diverse OP-human AChE conjugates. Oxime group reorientation of one of the bis-oximes, forcing it to point into the active center for reactivation, was confirmed by X-ray structural analysis. Our findings provide detailed structure-activity properties of several CNS-directed, uncharged aliphatic bis-oximes holding promise for use as protonation-dependent, conformationally adaptive, "smart" accelerated antidotes against OP toxicity.


Assuntos
Acetilcolinesterase/química , Antídotos/química , Sistema Nervoso Central/efeitos dos fármacos , Inibidores da Colinesterase/química , Reativadores da Colinesterase/química , Acetamidas/química , Acetamidas/uso terapêutico , Antídotos/síntese química , Antídotos/uso terapêutico , Sistema Nervoso Central/enzimologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/uso terapêutico , Reativadores da Colinesterase/síntese química , Reativadores da Colinesterase/uso terapêutico , Cristalografia por Raios X , Humanos , Cinética , Organofosfatos/química , Organofosfatos/toxicidade , Compostos Organofosforados/química , Compostos Organofosforados/toxicidade , Oximas/síntese química , Oximas/química , Oximas/farmacologia , Oximas/uso terapêutico , Conformação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade
12.
Chem Biol Interact ; 309: 108698, 2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31176713

RESUMO

Structure-guided design of novel pharmacologically active molecules relies at least in part on functionally relevant accuracy of macromolecular structures for template based drug design. Currently, about 95% of all macromolecular X-ray structures available in the PDB (Protein Data Bank) were obtained from diffraction experiments at low, cryogenic temperatures. However, it is known that functionally relevant conformations of both macromolecules and pharmacological ligands can differ at higher, physiological temperatures. We describe in this article development and properties of new human acetylcholinesterase (AChE) crystals of space group P31 and a new unit cell, amenable for room-temperature X-ray diffraction studies. We co-crystallized hAChE in P31 unit cell with the reversible inhibitor 9-aminoacridine that binds at the base of the active center gorge in addition to inhibitors that span the full length of the gorge, donepezil (Aricept, E2020) and AChE specific inhibitor BW284c51. Their new low temperature P31 space group structures appear similar to those previously obtained in the different P3121 unit cell. Successful solution of the new room temperature 3.2 Å resolution structure of BW284c51*hAChE complex from large P31 crystals enables us to proceed with studying room temperature structures of lower affinity complexes, such as oxime reactivators bound to hAChE, where temperature-related conformational diversity could be expected in both oxime and hAChE, which could lead to better informed structure-based design under conditions approaching physiological temperature.


Assuntos
Acetilcolinesterase/química , Cristalografia por Raios X , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Aminacrina/química , Aminacrina/metabolismo , Sítios de Ligação , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Dimerização , Humanos , Simulação de Dinâmica Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Temperatura
13.
J Biol Chem ; 294(27): 10607-10618, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31138650

RESUMO

Exposure to organophosphorus compounds (OPs) may be fatal if untreated, and a clear and present danger posed by nerve agent OPs has become palpable in recent years. OPs inactivate acetylcholinesterase (AChE) by covalently modifying its catalytic serine. Inhibited AChE cannot hydrolyze the neurotransmitter acetylcholine leading to its build-up at the cholinergic synapses and creating an acute cholinergic crisis. Current antidotes, including oxime reactivators that attack the OP-AChE conjugate to free the active enzyme, are inefficient. Better reactivators are sought, but their design is hampered by a conformationally rigid portrait of AChE extracted exclusively from 100K X-ray crystallography and scarcity of structural knowledge on human AChE (hAChE). Here, we present room temperature X-ray structures of native and VX-phosphonylated hAChE with an imidazole-based oxime reactivator, RS-170B. We discovered that inhibition with VX triggers substantial conformational changes in bound RS-170B from a "nonproductive" pose (the reactive aldoxime group points away from the VX-bound serine) in the reactivator-only complex to a "semi-productive" orientation in the VX-modified complex. This observation, supported by concurrent molecular simulations, suggested that the narrow active-site gorge of hAChE may be significantly more dynamic than previously thought, allowing RS-170B to reorient inside the gorge. Furthermore, we found that small molecules can bind in the choline-binding site hindering approach to the phosphorous of VX-bound serine. Our results provide structural and mechanistic perspectives on the reactivation of OP-inhibited hAChE and demonstrate that structural studies at physiologically relevant temperatures can deliver previously overlooked insights applicable for designing next-generation antidotes.


Assuntos
Acetilcolinesterase/química , Compostos Organotiofosforados/química , Oximas/química , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Sítios de Ligação , Domínio Catalítico , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Cristalografia por Raios X , Teoria da Densidade Funcional , Humanos , Simulação de Dinâmica Molecular , Compostos Organotiofosforados/metabolismo , Oximas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Temperatura
14.
Sci Adv ; 5(3): eaav0482, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30906862

RESUMO

The question vis-à-vis the chemistry of phosphoryl group transfer catalyzed by protein kinases remains a major challenge. The neutron diffraction structure of the catalytic subunit of cAMP-dependent protein kinase (PKA-C) provides a more complete chemical portrait of key proton interactions at the active site. By using a high-affinity protein kinase substrate (PKS) peptide, we captured the reaction products, dephosphorylated nucleotide [adenosine diphosphate (ADP)] and phosphorylated PKS (pPKS), bound at the active site. In the complex, the phosphoryl group of the peptide is protonated, whereas the carboxyl group of the catalytic Asp166 is not. Our structure, including conserved waters, shows how the peptide links the distal parts of the cleft together, creating a network that engages the entire molecule. By comparing slow-exchanging backbone amides to those determined by the NMR analysis of PKA-C with ADP and inhibitor peptide (PKI), we identified exchangeable amides that likely distinguish catalytic and inhibited states.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/química , Nêutrons , Peptídeos/química , Proteína Quinase C/química , Difosfato de Adenosina/química , Amidas/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catálise , Domínio Catalítico/genética , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Nucleotídeos/química , Fosforilação , Conformação Proteica , Prótons , Especificidade por Substrato , Água/química
15.
J Chem Inf Model ; 58(9): 1889-1901, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30086239

RESUMO

Protein-carbohydrate interactions are significant in a wide range of biological processes, disruption of which has been implicated in many different diseases. The capability of glycan-binding proteins (GBPs) to specifically bind to the corresponding glycans allows GBPs to be utilized in glycan biomarker detection or conversely to serve as targets for therapeutic intervention. However, understanding the structural origins of GBP specificity has proven to be challenging due to their typically low binding affinities (mM) and their potential to display broad or complex specificities. Here we perform molecular dynamics (MD) simulations and post-MD energy analyses with the Poisson-Boltzmann and generalized Born solvent models (MM-PB/GBSA) of the Erythrina cristagalli lectin (ECL) with its known ligands, and with new cocrystal structures reported herein. While each MM-PB/GBSA parametrization resulted in different estimates of the desolvation free energy, general trends emerged that permit us to define GBP binding preferences in terms of ligand substructure specificity. Additionally, we have further decomposed the theoretical interaction energies into contributions made between chemically relevant functional groups. Based on these contributions, the functional groups in each ligand can be assembled into a pharmacophore comprised of groups that are either critical for binding, or enhance binding, or are noninteracting. It is revealed that the pharmacophore for ECL consists of the galactopyranose (Gal) ring atoms along with C6 and the O3 and O4 hydroxyl groups. This approach provides a convenient method for identifying and quantifying the glycan pharmacophore and provides a novel method for interpreting glycan specificity that is independent of residue-level glycan nomenclature. A pharmacophore approach to defining specificity is readily transferable to molecular design software and, therefore, may be particularly useful in designing therapeutics (glycomimetics) that target GBPs.


Assuntos
Carboidratos/química , Lectinas de Plantas/química , Configuração de Carboidratos , Cristalização , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Termodinâmica
16.
Biochemistry ; 57(12): 1833-1837, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29517905

RESUMO

As one of the main receptors of a second messenger, cGMP, cGMP-dependent protein kinase (PKG) isoforms I and II regulate distinct physiological processes. The design of isoform-specific activators is thus of great biomedical importance and requires detailed structural information about PKG isoforms bound with activators, including accurate positions of hydrogen atoms and a description of the hydrogen bonding and water architecture. Here, we determined a 2.2 Å room-temperature joint X-ray/neutron (XN) structure of the human PKG II carboxyl cyclic nucleotide binding (CNB-B) domain bound with a potent PKG II activator, 8-pCPT-cGMP. The XN structure directly visualizes intermolecular interactions and reveals changes in hydrogen bonding patterns upon comparison to the X-ray structure determined at cryo-temperatures. Comparative analysis of the backbone hydrogen/deuterium exchange patterns in PKG II:8-pCPT-cGMP and previously reported PKG Iß:cGMP XN structures suggests that the ability of these agonists to activate PKG is related to how effectively they quench dynamics of the cyclic nucleotide binding pocket and the surrounding regions.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo II/química , GMP Cíclico/análogos & derivados , Ativadores de Enzimas/química , Tionucleotídeos/química , GMP Cíclico/química , Humanos , Ligação de Hidrogênio , Difração de Nêutrons , Domínios Proteicos , Espalhamento a Baixo Ângulo
17.
Nat Commun ; 8(1): 955, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038582

RESUMO

Enzymes dependent on pyridoxal 5'-phosphate (PLP, the active form of vitamin B6) perform a myriad of diverse chemical transformations. They promote various reactions by modulating the electronic states of PLP through weak interactions in the active site. Neutron crystallography has the unique ability of visualizing the nuclear positions of hydrogen atoms in macromolecules. Here we present a room-temperature neutron structure of a homodimeric PLP-dependent enzyme, aspartate aminotransferase, which was reacted in situ with α-methylaspartate. In one monomer, the PLP remained as an internal aldimine with a deprotonated Schiff base. In the second monomer, the external aldimine formed with the substrate analog. We observe a deuterium equidistant between the Schiff base and the C-terminal carboxylate of the substrate, a position indicative of a low-barrier hydrogen bond. Quantum chemical calculations and a low-pH room-temperature X-ray structure provide insight into the physical phenomena that control the electronic modulation in aspartate aminotransferase.Pyridoxal 5'-phosphate (PLP) is a ubiquitous co factor for diverse enzymes, among them aspartate aminotransferase. Here the authors use neutron crystallography, which allows the visualization of the positions of hydrogen atoms, and computation to characterize the catalytic mechanism of the enzyme.


Assuntos
Aspartato Aminotransferases/ultraestrutura , Deutério , Hidrogênio , Fosfato de Piridoxal , Aspartato Aminotransferases/metabolismo , Catálise , Domínio Catalítico , Cristalografia , Dimerização , Escherichia coli , Nêutrons , Bases de Schiff
18.
Biochemistry ; 56(36): 4747-4750, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28846383

RESUMO

Plant lectins are carbohydrate-binding proteins with various biomedical applications. Concanavalin A (Con A) holds promise in treating cancerous tumors. To better understand the Con A carbohydrate binding specificity, we obtained a room-temperature neutron structure of this legume lectin in complex with a disaccharide Manα1-2Man, mannobiose. The neutron structure afforded direct visualization of the hydrogen bonding between the protein and ligand, showing that the ligand is able to alter both protonation states and interactions for residues located close to and distant from the binding site. An unprecedented low-barrier hydrogen bond was observed forming between the carboxylic side chains of Asp28 and Glu8, with the D atom positioned equidistant from the oxygen atoms having an O···D···O angle of 101.5°.


Assuntos
Concanavalina A/química , Concanavalina A/metabolismo , Mananas/química , Mananas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Ligação de Hidrogênio , Conformação Proteica
19.
J Med Chem ; 60(5): 2018-2025, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28195728

RESUMO

HIV-1 protease inhibitors are crucial for treatment of HIV-1/AIDS, but their effectiveness is thwarted by rapid emergence of drug resistance. To better understand binding of clinical inhibitors to resistant HIV-1 protease, we used room-temperature joint X-ray/neutron (XN) crystallography to obtain an atomic-resolution structure of the protease triple mutant (V32I/I47V/V82I) in complex with amprenavir. The XN structure reveals a D+ ion located midway between the inner Oδ1 oxygen atoms of the catalytic aspartic acid residues. Comparison of the current XN structure with our previous XN structure of the wild-type HIV-1 protease-amprenavir complex suggests that the three mutations do not significantly alter the drug-enzyme interactions. This is in contrast to the observations in previous 100 K X-ray structures of these complexes that indicated loss of interactions by the drug with the triple mutant protease. These findings, thus, uncover limitations of structural analysis of drug binding using X-ray structures obtained at 100 K.


Assuntos
Cristalografia por Raios X/métodos , Protease de HIV/química , Catálise , Nêutrons , Conformação Proteica
20.
Angew Chem Int Ed Engl ; 55(16): 4924-7, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-26958828

RESUMO

Neutron crystallography was used to directly locate two protons before and after a pH-induced two-proton transfer between catalytic aspartic acid residues and the hydroxy group of the bound clinical drug darunavir, located in the catalytic site of enzyme HIV-1 protease. The two-proton transfer is triggered by electrostatic effects arising from protonation state changes of surface residues far from the active site. The mechanism and pH effect are supported by quantum mechanics/molecular mechanics (QM/MM) calculations. The low-pH proton configuration in the catalytic site is deemed critical for the catalytic action of this enzyme and may apply more generally to other aspartic proteases. Neutrons therefore represent a superb probe to obtain structural details for proton transfer reactions in biological systems at a truly atomic level.


Assuntos
Cristalografia/métodos , Protease de HIV/metabolismo , Eletricidade Estática , Domínio Catalítico , Protease de HIV/química , Prótons , Teoria Quântica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...