Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Obes (Lond) ; 47(10): 1008-1022, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37488221

RESUMO

BACKGROUND: Metabolic inflammation mediated obesity requires bacterial molecules to trigger immune and adipose cells leading to inflammation and adipose depot development. In addition to the well-established gut microbiota dysbiosis, a leaky gut has been identified in patients with obesity and animal models, characterized by the presence of a tissue microbiota in the adipose fat pads. METHODS: To determine its potential role, we sequenced the bacterial 16 S rRNA genes in the visceral adipose depot of patients with obesity. Taking great care (surgical, biochemical, and bioinformatic) to avoid environmental contaminants. We performed statistical discriminant analyses to identify specific signatures and constructed network of interactions between variables. RESULTS: The data showed that a specific 16SrRNA gene signature was composed of numerous bacterial families discriminating between lean versus patients with obesity and people with severe obesity. The main discriminant families were Burkholderiaceae, Yearsiniaceae, and Xanthomonadaceae, all of which were gram-negative. Interestingly, the Morganellaceae were totally absent from people without obesity while preponderant in all in patients with obesity. To generate hypotheses regarding their potential role, we inferred metabolic pathways from the 16SrRNA gene signatures. We identified several pathways associated with adenosyl-cobalamine previously described to be linked with adipose tissue development. We further identified chorismate biosynthesis, which is involved in aromatic amino-acid metabolism and could play a role in fat pad development. This innovative approach generates novel hypotheses regarding the gut to adipose tissue axis. CONCLUSIONS: This innovative approach generates novel hypotheses regarding the gut to adipose tissue axis in obesity and notably the potential role of tissue microbiota.


Assuntos
Gordura Intra-Abdominal , Microbiota , Animais , Humanos , Gordura Intra-Abdominal/metabolismo , Obesidade/metabolismo , Obesidade Abdominal/metabolismo , Inflamação/metabolismo , Tecido Adiposo/metabolismo
3.
Cells ; 11(22)2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36428969

RESUMO

Adipose tissue (AT) expansion either through hypertrophy or hyperplasia is determinant in the link between obesity and metabolic alteration. The present study aims to profile the unhealthy subcutaneous and visceral AT (SAT, VAT) expansion in obesity and in the outcomes of bariatric surgery (BS). The repartition of adipocytes according to diameter and the numbers of progenitor subtypes and immune cells of SAT and VAT from 161 obese patients were determined by cell imaging and flow cytometry, respectively. Associations with insulin resistance (IR) prior to BS as well as with the loss of excessive weight (EWL) and IR at 1 and 3 years post-BS were studied; prior to BS, SAT and VAT, unhealthy expansions are characterized by the accumulation of adipogenic progenitors and CD4+ T lymphocytes and by adipocyte hypertrophy and elevated macrophage numbers, respectively. Such SAT stromal profile and VAT adipocyte hypertrophy are associated with adverse BS outcomes. Finally, myofibrogenic progenitors are a common determinant of weight and IR trajectories post-BS; the study suggests that adipogenesis in SAT and adipocyte hypertrophy in VAT are common determinants of metabolic alterations with obesity and of the weight loss and metabolic response to bariatric surgery. The data open up new avenues to better understand and predict individual outcomes in response to changes in energy balance.


Assuntos
Cirurgia Bariátrica , Resistência à Insulina , Humanos , Adipócitos/metabolismo , Obesidade/metabolismo , Resistência à Insulina/fisiologia , Células Estromais/metabolismo , Hipertrofia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...