Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067060

RESUMO

Recent findings suggest that epithelial to mesenchymal transition (EMT), a key step during heart development, is involved in cardiac tissue repair following myocardial infarction (MI). MicroRNAs (miRNAs) act as key regulators in EMT processes; however, the mechanisms by which miRNAs target epicardial EMT remain largely unknown. Here, by using an in vitro model of epicardial EMT, we investigated the role of miRNAs as regulators of this process and their potential targets. EMT was induced in murine epicardial-mesothelial cells (EMCs) through TGF ß1 treatment for 48, 72, and 96 h as indicated by the expression of EMT-related genes by qRT-PCR, WB, and immunofluorescence. Further, enhanced expression of stemness genes was also detected. Among several EMT-related miRNAs, miR-200c-3p expression resulted as the most strongly suppressed. Interestingly, we also found a significant upregulation of Follistatin-related protein 1 (FSTL1), a miR-200c predicted target already identified as a potent cardiogenic factor produced by epicardial cells that promotes regeneration following MI. Dual-luciferase reporter assay demonstrated that miR-200c-3p directly targeted the 3'-untranslated region of FSTL1 in EMCs. Consistently, WB analysis showed that knockdown of miR-200c-3p significantly increased FSTL1 expression, whereas overexpression of miR-200c-3p counteracted TGF ß1-mediated FSTL1 upregulation. Importantly, FSTL1 silencing maintained epithelial features in EMCs, despite EMT induction by TGF ß1, and attenuated EMT-associated traits, including migration and stemness. In conclusion, epicardial FSTL1, an important cardiogenic factor in its secreted form, induces EMT, stemness, and migration of EMCs in a miR-200c-3p dependent pathway.


Assuntos
Transição Epitelial-Mesenquimal , Epitélio/metabolismo , Proteínas Relacionadas à Folistatina/metabolismo , MicroRNAs/metabolismo , Pericárdio/patologia , Animais , Biomarcadores/metabolismo , Transição Epitelial-Mesenquimal/genética , Feminino , Mesoderma/patologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fator de Crescimento Transformador beta1/farmacologia
2.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916025

RESUMO

Nucleophosmin (NPM), a nucleolar multifunctional phosphoprotein, acts as a stress sensor in different cell types. NPM can be actively secreted by inflammatory cells, however its biology on endothelium remains unexplored. In this study, we show for the first time that NPM is secreted by human vein endothelial cells (HUVEC) in the early response to serum deprivation and that NPM acts as a pro-inflammatory and angiogenic molecule both in vitro and in vivo. Accordingly, 24 h of serum starvation condition induced NPM relocalization from the nucleus to cytoplasm. Interestingly, NPM was increasingly excreted in HUVEC-derived conditioned media in a time dependent fashion upon stress conditions up to 24 h. The secretion of NPM was unrelated to cell necrosis within 24 h. The treatment with exogenous and recombinant NPM (rNPM) enhanced migration as well as the Intercellular Adhesion Molecule 1 (ICAM-1) but not Vascular cell adhesion protein 1 (VCAM-1) expression and it did not affect cell proliferation. Notably, in vitro tube formation by Matrigel assay was significantly increased in HUVEC treated with rNPM compared to controls. This result was confirmed by the in vivo injection of Matrigel plug assay upon stimulation with rNPM, displaying significant enhanced number of functional capillaries in the plugs. The stimulation with rNPM in HUVEC was also associated to the increased expression of master genes regulating angiogenesis and migration, including Vascular Endothelial Growth Factor-A (VEGF-A), Hepatocyte Growth Factor (HGF), Stromal derived factor-1 (SDF-1), Fibroblast growth factor-2 (FGF-2), Platelet Derived Growth Factor-B (PDGF-B), and Matrix metallopeptidase 9 (MMP9). Our study demonstrates for the first time that NPM is physiologically secreted by somatic cells under stress condition and in the absence of cell necrosis. The analysis of the biological effects induced by NPM mainly related to a pro-angiogenic and inflammatory activity might suggest an important autocrine/paracrine role for NPM in the regulation of both phenomena.


Assuntos
Células Endoteliais/fisiologia , Neovascularização Patológica , Proteínas Nucleares/metabolismo , Estresse Fisiológico , Células Endoteliais da Veia Umbilical Humana , Humanos , Nucleofosmina
3.
Curr Stem Cell Res Ther ; 15(8): 661-673, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32072905

RESUMO

BACKGROUND: Substantial evidences support the hypothesis that the epicardium has a role in cardiac repair and regeneration in part providing, by epithelial to mesenchymal transition (EMT), progenitor cells that differentiate into cardiac cell types and in part releasing paracrine factors that contribute to cardiac repair. Besides cell contribution, a significant paracrine communication occurs between the epicardium and the myocardium that improves the whole regenerative response. Signaling pathways underlying this communication are multiple as well as soluble factors involved in cardiac repair and secreted both by myocardial and epicardial cells. Most recently, extracellular vesicles, i.e. exosomes, that accumulate in the pericardial fluid (PF) and are able to transport bioactive molecules (cytosolic proteins, mRNAs, miRNAs and other non-coding RNAs), have been also identified as potential mediators of epicardial-mediated repair following myocardial injury. CONCLUSION: This mini-review provides an overview of the epicardial-myocardial signaling in regulating cardiac repair in ischemic heart diseases. Indeed, a detailed understanding of the crosstalk between myocardial and epicardial cells and how paracrine mechanisms are involved in the context of ischemic heart diseases would be of tremendous help in developing novel therapeutic approaches to promote cardiomyocytes survival and heart regeneration following myocardial infarction (MI).


Assuntos
Transição Epitelial-Mesenquimal , Infarto do Miocárdio , Miocárdio , Pericárdio/fisiologia , Transdução de Sinais , Humanos , Miócitos Cardíacos
4.
Vasc Biol ; 1(1): H89-H96, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32923959

RESUMO

Acute myocardial infarction (MI) and its consequences are the most common and lethal heart syndromes worldwide and represent a significant health problem. Following MI, apoptosis has been generally seen as the major contributor of the cardiomyocyte fate and of the resultant myocardial remodeling. However, in recent years, it has been discovered that, following MI, cardiomyocytes could activate autophagy in an attempt to protect themselves against ischemic stress and to preserve cardiac function. Although initially seen as two completely separate responses, recent works have highlighted the intertwined crosstalk between apoptosis and autophagy. Numerous researches have tried to unveil the mechanisms and the molecular players involved in this phenomenon and have identified in high-mobility group box 1 (HMGB1), a highly conserved non-histone nuclear protein with important roles in the heart, one of the major regulator. Thus, the aim of this mini review is to discuss how HMGB1 regulates these two responses in ischemic heart diseases. Indeed, a detailed understanding of the crosstalk between apoptosis and autophagy in these pathologies and how HMGB1 regulates them would be of tremendous help in developing novel therapeutic approaches aimed to promote cardiomyocyte survival and to diminish tissue injury following MI.

5.
Pharmacol Ther ; 196: 160-182, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30529040

RESUMO

High-mobility group box 1 (HMGB1) is one of the most abundant proteins in eukaryotes and the best characterized damage-associated molecular pattern (DAMP). The biological activities of HMGB1 depend on its subcellular location, context and post-translational modifications. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription regulation and genome stability; in the cytoplasm, its main function is to regulate the autophagic flux while in the extracellular environment, it possesses more complicated functions and it is involved in a large variety of different processes such as inflammation, migration, invasion, proliferation, differentiation and tissue regeneration. Due to this pleiotropy, the role of HMGB1 has been vastly investigated in various pathological diseases and a large number of studies have explored its function in cardiovascular pathologies. However, in this contest, the precise mechanism of action of HMGB1 and its therapeutic potential are still very controversial since is debated whether HMGB1 is involved in tissue damage or plays a role in tissue repair and regeneration. The main focus of this review is to provide an overview of the effects of HMGB1 in different ischemic heart diseases and to discuss its functions in these pathological conditions.


Assuntos
Proteína HMGB1/metabolismo , Cardiopatias/metabolismo , Animais , Cardiopatias/patologia , Humanos , Miocárdio/metabolismo , Miocárdio/patologia
6.
Oncotarget ; 9(1): 937-957, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29416668

RESUMO

The regenerative effects of cardiac ckit+ stem cells (ckit+CSCs) in acute myocardial infarction (MI) have been studied extensively, but how these cells exert a protective effect on cardiomyocytes is not well known. Growing evidences suggest that in adult stem cells injury triggers inflammatory signaling pathways which control tissue repair and regeneration. Aim of the present study was to determine the mechanisms underlying the cardioprotective effects of ckit+CSCs following transplantation in a murine model of MI. Following isolation and in vitro expansion, cardiac ckit+CSCs were subjected to normoxic and hypoxic conditions and assessed at different time points. These cells adapted to hypoxia as showed by the activation of HIF-1α and the expression of a number of genes, such as VEGF, GLUT1, EPO, HKII and, importantly, of alarmin receptors, such as RAGE, P2X7R, TLR2 and TLR4. Activation of these receptors determined an NFkB-dependent inflammatory and reparative gene response (IRR). Importantly, hypoxic ckit+CSCs increased the secretion of the survival growth factors IGF-1 and HGF. To verify whether activation of the IRR in a hypoxic microenvironment could exert a beneficial effect in vivo, autologous ckit+CSCs were transplanted into mouse heart following MI. Interestingly, transplantation of ckit+CSCs lowered apoptotic rates and induced autophagy in the peri-infarct area; further, it reduced hypertrophy and fibrosis and, most importantly, improved cardiac function. ckit+CSCs are able to adapt to a hypoxic environment and activate an inflammatory and reparative response that could account, at least in part, for a protective effect on stressed cardiomyocytes following transplantation in the infarcted heart.

7.
Aesthet Surg J ; 37(5): 591-602, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052909

RESUMO

Background: Fat grafts enriched with cells of the stromal vascular fraction (SVF), especially adipose-derived stromal cells (ASCs), exhibit significantly improved retention over non enriched, plain fat. Different types of liposuction cannulae may yield lipoaspirates with different subpopulations of cells. Moreover, preparation of adipose tissue for transplantation typically involves centrifugation, which creates a density gradient of fat. Objectives: The authors sought to determine whether liposuction with a barbed or smooth cannula altered the enrichment of the SVF, and specifically ASCs, in low-density (LD) and high-density (HD) fractions of centrifuged adipose tissue. Methods: Fat was harvested from 2 abdominal sites of 5 healthy women with a barbed or smooth multihole blunt-end cannula. After centrifugation, LD and HD fat fractions were digested with collagenase and analyzed by polychromatic flow cytometry to identify and enumerate distinct populations of cells. Results: Overall cell yield and the number of immune cells were consistently higher in HD fractions than in LD fractions, regardless of the cannula employed. More living cells, and specifically more ASCs, populated the HD fractions of lipoaspirates obtained with a barbed cannula than with a smooth cannula. Conclusions: In this study, lipoaspiration with a barbed cannula and isolation of the HD layer of centrifuged adipose tissue yielded maximal amounts of SVF cells, including ASCs.


Assuntos
Tecido Adiposo/citologia , Tecido Adiposo/transplante , Separação Celular/métodos , Lipectomia/instrumentação , Coleta de Tecidos e Órgãos/instrumentação , Transplantes/citologia , Adulto , Cânula , Centrifugação , Feminino , Citometria de Fluxo/métodos , Humanos , Lipectomia/métodos , Pessoa de Meia-Idade , Células Estromais/transplante , Coleta de Tecidos e Órgãos/métodos
8.
J Cell Physiol ; 232(5): 1135-1143, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27580416

RESUMO

Exogenous High Mobility Group Box-1 protein (HMGB1) has been reported to protect the infarcted heart but the underlying mechanism is quite complex. In particular, its effect on ischemic cardiomyocytes has been poorly investigated. Aim of the present study was to verify whether and how autophagy and apoptosis were involved in HMGB1-induced heart repair following myocardial infarction (MI). HMGB1 (200 ng) or denatured HMGB1 were injected in the peri-infarcted region of mouse hearts following acute MI. Three days after treatment, an upregulation of autophagy was detected in infarcted HMGB1 treated hearts compared to controls. Specifically, HMGB1 induced autophagy by significantly upregulating the protein expression of LC3, Beclin-1, and Atg7 in the border zone. To gain further insights into the molecular mechanism of HMGB1-mediated autophagy, WB analysis were performed in cardiomyocytes isolated from 3 days infarcted hearts in the presence and in the absence of HMGB1 treatment. Results showed that upregulation of autophagy by HMGB1 treatment was potentially related to activation of AMP-activated protein kinase (AMPK) and inhibition of the mammalian target of rapamycin complex 1 (mTORC1). Accordingly, in these hearts, phospho-Akt signaling pathway was inhibited. The induction of autophagy was accompanied by reduced cardiomyocyte apoptotic rate and decreased expression levels of Bax/Bcl-2 and active caspase-3 in the border zone of 3 days infarcted mice following HMGB1 treatment. We report the first in vivo evidence that HMGB1 treatment in a murine model of acute MI might induce cardiomyocyte survival through attenuation of apoptosis and AMP-activated protein kinase-dependent autophagy. J. Cell. Physiol. 232: 1135-1143, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína HMGB1/farmacologia , Complexos Multiproteicos/antagonistas & inibidores , Infarto do Miocárdio/patologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Biomarcadores/metabolismo , Separação Celular , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Testes de Função Cardíaca , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/metabolismo , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
9.
Int J Cardiol ; 197: 333-47, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26159041

RESUMO

BACKGROUND: We recently demonstrated that epicardial progenitor cells participate in the regenerative response to myocardial infarction (MI) and factors released in the pericardial fluid (PF) may play a key role in this process. Exosomes are secreted nanovesicles of endocytic origin, identified in most body fluids, which may contain molecules able to modulate a variety of cell functions. Here, we investigated whether exosomes are present in the PF and their potential role in cardiac repair. METHODS AND RESULTS: Early gene expression studies in 3day-infarcted mouse hearts showed that PF induces epithelial-to-mesenchymal transition (EMT) in epicardial cells. Exosomes were identified in PFs from non-infarcted patients (PFC) and patients with acute MI (PFMI). A shotgun proteomics analysis identified clusterin in exosomes isolated from PFMI but not from PFC. Notably, clusterin has a protective effect on cardiomyocytes after acute MI in vivo and is an important mediator of TGFß-induced. Clusterin addition to the pericardial sac determined an increase in epicardial cells expressing the EMT marker α-SMA and, interestingly, an increase in the number of epicardial cells ckit(+)/α-SMA(+), 7days following MI. Importantly, clusterin treatment enhanced arteriolar length density and lowered apoptotic rates in the peri-infarct area. Hemodynamic studies demonstrated an improvement in cardiac function in clusterin-treated compared to untreated infarcted hearts. CONCLUSIONS: Exosomes are present and detectable in the PFs. Clusterin was identified in PFMI-exosomes and might account for an improvement in myocardial performance following MI through a framework including EMT-mediated epicardial activation, arteriogenesis and reduced cardiomyocyte apoptosis.


Assuntos
Clusterina/metabolismo , Vasos Coronários/metabolismo , Exossomos/metabolismo , Infarto do Miocárdio/metabolismo , Líquido Pericárdico/metabolismo , Pericárdio/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose/fisiologia , Biomarcadores/análise , Biomarcadores/metabolismo , Clusterina/análise , Vasos Coronários/química , Exossomos/química , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico , Miocárdio/química , Miocárdio/metabolismo , Miocárdio/patologia , Líquido Pericárdico/química , Pericárdio/química , Pericárdio/patologia
10.
J Mol Med (Berl) ; 93(7): 735-48, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25943780

RESUMO

The epithelial to mesenchymal transition (EMT) is a biological process that drives the formation of cells involved both in tissue repair and in pathological conditions, including tissue fibrosis and tumor metastasis by providing cancer cells with stem cell properties. Recent findings suggest that EMT is reactivated in the heart following ischemic injury. Specifically, epicardial EMT might be involved in the formation of cardiac progenitor cells (CPCs) that can differentiate into endothelial cells, smooth muscle cells, and, possibly, cardiomyocytes. The identification of mechanisms and signaling pathways governing EMT-derived CPC generation and differentiation may contribute to the development of a more efficient regenerative approach for adult heart repair. Here, we summarize key literature in the field.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Células-Tronco Mesenquimais/citologia , Isquemia Miocárdica/patologia , Miocárdio/citologia , Pericárdio/citologia , Diferenciação Celular , Humanos , Miócitos Cardíacos/citologia , Transdução de Sinais
11.
Mol Ther ; 21(10): 1841-51, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23760446

RESUMO

Exogenous high-mobility group box 1 protein (HMGB1) administration to the mouse heart, during acute myocardial infarction (MI), results in cardiac regeneration via resident c-kit(+) cell (CPC) activation. Aim of the present study was to identify the molecular pathways involved in HMGB1-induced heart repair. Gene expression profiling was performed to identify differentially expressed genes in the infarcted and bordering regions of untreated and HMGB1-treated mouse hearts, 3 days after MI. Functional categorization of the transcripts, accomplished using Ingenuity Pathway Analysis software (IPA), revealed that genes involved in tissue regeneration, that is, cardiogenesis, vasculogenesis and angiogenesis, were present both in the infarcted area and in the peri-infarct zone; HMGB1 treatment further increased the expression of these genes. IPA revealed the involvement of Notch signaling pathways in HMGB1-treated hearts. Importantly, HMGB1 determined a 35 and 58% increase in cardiomyocytes and CPCs expressing Notch intracellular cytoplasmic domain, respectively. Further, Notch inhibition by systemic treatment with the γ-secretase inhibitor DAPT, which blocked the proteolytic activation of Notch receptors, reduced the number of CPCs, their proliferative fraction, and cardiomyogenic differentiation in HMGB1-treated infarcted hearts. The present study gives insight into the molecular processes involved in HMGB1-mediated cardiac regeneration and indicates Notch signaling as a key player.


Assuntos
Perfilação da Expressão Gênica , Proteína HMGB1/farmacologia , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Receptores Notch/metabolismo , Regeneração/genética , Transdução de Sinais , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Proteína HMGB1/administração & dosagem , Coração/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
12.
J Invest Dermatol ; 132(7): 1908-17, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22437320

RESUMO

We aimed at identifying novel regulators of skin wound healing (WH), in an epidermal scratch WH assay, by a small interfering RNA (siRNA) silencing approach. Several transcription factors have been previously reported to affect wound repair. We here show that gene silencing of the transcription factor CAAT enhancer-binding protein γ (C/EBPγ), STAT3, REL, RELA, RELB, SP1, and NFkB impaired WH in vitro, in keratinocytes, whereas E2F and CREBBP silencing accelerated the WH process. We further characterized C/EBPγ, as its silencing yielded the maximal impairment (52.2 ± 12.5%) of scratch wounding (SW). We found that C/EBPγ silencing inhibited both EGF- and serum-induced keratinocyte migration, whereas C/EBPγ overexpression enhanced cell migration to EGF and to serum via the EGFR. Further, C/EBPγ silencing impaired scratch-induced Y1068 and Y1173 EGFR phosphorylation, as well as Y118 paxillin phosphorylation, key molecules regulating cell migration and epidermal WH. Moreover, C/EBPγ levels were induced in keratinocytes, following both SW and EGF stimulation. C/EBPγ siRNA silencing in vivo impaired WH at 3, 5, 7, and 14 days following excisional wounding in mice inhibited both re-epithelialization and granulation tissue formation, and induced a decrease of arteriole number. In conclusion, we here report that C/EBPγ positively regulates wound repair both in vitro and in vivo, at least in part, by affecting EGFR signaling.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Receptores ErbB/fisiologia , Transdução de Sinais/fisiologia , Cicatrização , Proteínas Estimuladoras de Ligação a CCAAT/antagonistas & inibidores , Proteínas Estimuladoras de Ligação a CCAAT/genética , Movimento Celular , Proliferação de Células , Células Cultivadas , Humanos , NF-kappa B/fisiologia , Paxilina/metabolismo , Fosforilação , RNA Interferente Pequeno/genética
13.
PLoS One ; 6(6): e19845, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21731608

RESUMO

AIMS: HMGB1 injection into the mouse heart, acutely after myocardial infarction (MI), improves left ventricular (LV) function and prevents remodeling. Here, we examined the effect of HMGB1 in chronically failing hearts. METHODS AND RESULTS: Adult C57 BL16 female mice underwent coronary artery ligation; three weeks later 200 ng HMGB1 or denatured HMGB1 (control) were injected in the peri-infarcted region of mouse failing hearts. Four weeks after treatment, both echocardiography and hemodynamics demonstrated a significant improvement in LV function in HMGB1-treated mice. Further, HMGB1-treated mice exhibited a ∼23% reduction in LV volume, a ∼48% increase in infarcted wall thickness and a ∼14% reduction in collagen deposition. HMGB1 induced cardiac regeneration and, within the infarcted region, it was found a ∼2-fold increase in c-kit⁺ cell number, a ∼13-fold increase in newly formed myocytes and a ∼2-fold increase in arteriole length density. HMGB1 also enhanced MMP2 and MMP9 activity and decreased TIMP-3 levels. Importantly, miR-206 expression 3 days after HMGB1 treatment was 4-5-fold higher than in control hearts and 20-25 fold higher that in sham operated hearts. HMGB1 ability to increase miR-206 was confirmed in vitro, in cardiac fibroblasts. TIMP3 was identified as a potential miR-206 target by TargetScan prediction analysis; further, in cultured cardiac fibroblasts, miR-206 gain- and loss-of-function studies and luciferase reporter assays showed that TIMP3 is a direct target of miR-206. CONCLUSIONS: HMGB1 injected into chronically failing hearts enhanced LV function and attenuated LV remodelling; these effects were associated with cardiac regeneration, increased collagenolytic activity, miR-206 overexpression and miR-206 -mediated inhibition of TIMP-3.


Assuntos
Proteína HMGB1/farmacologia , Insuficiência Cardíaca/fisiopatologia , MicroRNAs/metabolismo , Regeneração/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-3/antagonistas & inibidores , Remodelação Ventricular/efeitos dos fármacos , Animais , Sequência de Bases , Colágeno/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Coração/fisiopatologia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/enzimologia , Testes de Função Cardíaca , Hemodinâmica/efeitos dos fármacos , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , MicroRNAs/genética , Dados de Sequência Molecular , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/enzimologia , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Regeneração/genética , Análise de Sobrevida , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Ultrassonografia
14.
Pharmacol Ther ; 129(1): 82-96, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20937304

RESUMO

During heart development, the epicardium provides cardiogenic progenitor cells and, together with the myocardium, directs lineage specification and coordinates both myocardial growth and coronary vasculature formation. In the adult heart, the established function of the epicardium is to provide a smooth surface that, together with the pericardium, favors heart movement during contraction and relaxation. Recently, epicardial precursor cells with the ability to differentiate into cardiomyocytes and vascular cells have been identified and the quiescent nature of the adult epicardium has been questioned. Interestingly, the signaling pathways involved in this process appear to be regulated, in the adult heart, by mechanisms similar to those in the embryonic heart. This review will summarize the properties of the embryonic epicardium and will focus on recent advances on the role of the adult epicardium in cardiac regeneration. Specifically, we will present aspects of epicardial cell biology that may be relevant to the development of new therapeutic approaches aimed at inducing heart repair following injury.


Assuntos
Coração/fisiologia , Isquemia Miocárdica/terapia , Miocárdio/citologia , Miócitos Cardíacos/citologia , Pericárdio/metabolismo , Células-Tronco/fisiologia , Adulto , Animais , Diferenciação Celular , Coração/embriologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Pericárdio/citologia , Pericárdio/embriologia , Regeneração , Transdução de Sinais
15.
Cardiovasc Res ; 89(3): 650-60, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20833652

RESUMO

AIMS: Bone marrow mesenchymal stromal cell (BMStC) transplantation into the infarcted heart improves left ventricular function and cardiac remodelling. However, it has been suggested that tissue-specific cells may be better for cardiac repair than cells from other sources. The objective of the present work has been the comparison of in vitro and in vivo properties of adult human cardiac stromal cells (CStC) to those of syngeneic BMStC. METHODS AND RESULTS: Although CStC and BMStC exhibited a similar immunophenotype, their gene, microRNA, and protein expression profiles were remarkably different. Biologically, CStC, compared with BMStC, were less competent in acquiring the adipogenic and osteogenic phenotype but more efficiently expressed cardiovascular markers. When injected into the heart, in rat a model of chronic myocardial infarction, CStC persisted longer within the tissue, migrated into the scar, and differentiated into adult cardiomyocytes better than BMStC. CONCLUSION: Our findings demonstrate that although CStC and BMStC share a common stromal phenotype, CStC present cardiovascular-associated features and may represent an important cell source for more efficient cardiac repair.


Assuntos
Transplante de Medula Óssea/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/terapia , Miocárdio/citologia , Células Estromais/citologia , Adulto , Animais , Biomarcadores , Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Fusão Celular , Linhagem da Célula/fisiologia , Humanos , Imunofenotipagem , Masculino , Infarto do Miocárdio/patologia , Neovascularização Fisiológica/fisiologia , Ratos , Ratos Wistar
17.
Muscle Nerve ; 41(6): 828-35, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20151462

RESUMO

The stromal cell-derived factor (SDF)-1/CXC receptor 4 (CXCR4) axis has been shown to play a role in skeletal muscle development, but its contribution to postnatal myogenesis and the role of the alternate SDF-1 receptor, CXC receptor 7 (CXCR7), are poorly characterized. Western blot analysis and real-time polymerase chain reaction (PCR) were performed to evaluate in vitro the effect of SDF-1 and CXCR4 and CXCR7 inhibition on myogenic differentiation. Proliferating myoblasts express CXCR4, CXCR7, and SDF-1; during myogenic differentiation, CXCR4 and CXCR7 levels are downregulated, and SDF-1 release is decreased. SDF-1 anticipates myosin heavy chain accumulation and myotube formation in both C2C12 myoblasts and satellite cells. Interestingly, inhibition of CXCR4 and CXCR7 signaling, either by drugs or RNA interfererence, blocks myogenic differentiation. Further, the CXCR4 antagonist, 4F-benzoyl-TN14003, inhibits myoblast cell cycle withdrawal and decreases the retinoblastoma gene (pRb) product accumulation in its hypophosphorylated form. Our experiments demonstrate that SDF-1 regulates myogenic differentiation via both CXCR4 and CXCR7 chemokine receptors.


Assuntos
Quimiocina CXCL12/genética , Mioblastos/citologia , Receptores CXCR4/genética , Receptores CXCR/genética , Animais , Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Citometria de Fluxo , Camundongos , Mioblastos/efeitos dos fármacos , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Receptores CXCR4/antagonistas & inibidores
18.
J Mol Cell Cardiol ; 48(4): 609-18, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19968998

RESUMO

Stem cells expressing c-kit have been identified in the adult epicardium. In mice, after myocardial infarction, these cells proliferate, migrate to the injury site and differentiate toward myocardial and vascular phenotype. We hypothesized that, acutely after myocardial infarction, pericardial sac integrity and pericardial fluid (PF) may play a role on epicardial cell gene expression, proliferation and differentiation. Microarray analysis indicated that, in the presence of an intact pericardial sac, myocardial infarction modulated 246 genes in epicardial cells most of which were related to cell proliferation, cytoskeletal organization, wound repair and signal transduction. Interestingly, WT1, Tbx18 and RALDH2, notably involved in epicardial embryonic development, were markedly up-regulated. Importantly, coexpression of stem cell antigen c-kit and WT1 and/or Tbx18 was detected by immunohistochemistry in the mouse epicardium during embryogenesis as well as in adult mouse infarcted heart. Injection of human pericardial fluid from patients with acute myocardial ischemia (PFMI) in the pericardial cavity of non-infarcted mouse hearts, enhanced, epicardial cell proliferation and WT1 expression. Further, PFMI supplementation to hypoxic cultured human epicardial c-kit(+) cells increased WT1 and Tbx18 mRNA expression. Finally, insulin-like growth factor 1, hepatocyte growth factor and high mobility group box 1 protein, previously involved in cardiac c-kit(+) cell proliferation and differentiation, were increased in PFMI compared to the pericardial fluid of non ischemic patients. In conclusion, myocardial infarction reactivates an embryonic program in epicardial c-kit(+) cells; soluble factors released in the pericardial fluids following myocardial necrosis may play a role in this process.


Assuntos
Infarto do Miocárdio/metabolismo , Pericárdio/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Idoso , Animais , Diferenciação Celular , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Infarto do Miocárdio/patologia , Derrame Pericárdico/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Transdução de Sinais , Proteínas WT1/metabolismo
19.
Cardiovasc Ther ; 27(4): 289-304, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19903190

RESUMO

Patients with peripheral artery disease (PAD) and critical limb ischemia are the main candidates for limb amputations and have a poor life expectancy. Frequently, these patients are not eligible for either surgical or percutaneous interventions aimed at mechanical revascularization. Therefore, new strategies need to be identified to offer these patients a viable therapeutic option. Gene and cell therapy hold great promise for the treatment of peripheral vascular diseases because, in animal models, local delivery of growth factors and endothelial progenitor cells result in new blood vessel formation and regeneration of ischemic tissues. In this article, are reviewed phase I and phase II gene, and cell therapy clinical trials in patients with PAD.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Doenças Vasculares Periféricas/terapia , Transplante de Medula Óssea , Fator 1 de Crescimento de Fibroblastos/genética , Fator de Crescimento de Hepatócito/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Leucócitos Mononucleares/transplante , Fator A de Crescimento do Endotélio Vascular/genética
20.
Int J Cardiol ; 131(2): 156-67, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18823669

RESUMO

Emerging evidences indicate that endothelial progenitor cells (EPCs) actively contribute in regulating cardiovascular homeostasis, and interest is growing for possible future diagnostic and therapeutic applications in the cardiovascular arena. In the present clinically-oriented review, special attention was given to the clinical implications of the potential of EPCs to test and strengthen the capacity of the organism to challenge atherosclerosis, vascular remodelling and ischemia. Accumulating data suggest that the vasculo-protective functions of EPCs may be used as cellular biomarkers for endothelial damage, or may be pharmacologically modulated to enhance the body's defence to atherosclerosis. Furthermore, biomedical engineering and cell transplantation open new scenarios to reverse vascular and graft remodelling and achieve therapeutic angiogenesis in limb and heart ischemia. However, a number of unsolved issues remain to be exploited, such as the identification of the true identity of EPCs and a better characterization of their role in vascular homeostasis under normal and pathologic conditions.


Assuntos
Sistema Cardiovascular , Endotélio Vascular/fisiologia , Homeostase/fisiologia , Células-Tronco/fisiologia , Animais , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/cirurgia , Sistema Cardiovascular/citologia , Sobrevivência Celular/fisiologia , Endotélio Vascular/citologia , Humanos , Transplante de Células-Tronco/tendências , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...