Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(17): 3477-3489, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602033

RESUMO

Selective degradation of disease-causing proteins using proteolysis targeting chimeras (PROTACs) has gained great attention, thanks to its several advantages over traditional therapeutic modalities. Despite the advances made so far, the structural chemical complexity of PROTACs poses challenges in their synthetic approaches. PROTACs are typically prepared through a convergent approach, first synthesizing two fragments separately (target protein and E3 ligase ligands) and then coupling them to produce a fully assembled PROTAC. The amidation reaction represents the most common coupling exploited in PROTACs synthesis. Unfortunately, the overall isolated yields of such synthetic procedures are usually low due to one or more purification steps to obtain the final PROTAC with acceptable purity. In this work, we focused our attention on the optimization of the final amidation step for the synthesis of an anti-SARS-CoV-2 PROTAC by investigating different amidation coupling reagents and a range of alternative solvents, including ionic liquids (ILs). Among the ILs screened, [OMIM][ClO4] emerged as a successful replacement for the commonly used DMF within the HATU-mediated amidation reaction, thus allowing the synthesis of the target PROTAC under mild and sustainable conditions in very high isolated yields. With the optimised conditions in hand, we explored the scalability of the synthetic approach and the substrate scope of the reaction by employing different E3 ligase ligand (VHL and CRBN)-based intermediates containing linkers of different lengths and compositions or by using different target protein ligands. Interestingly, in all cases, we obtained high isolated yields and complete conversion in short reaction times.


Assuntos
Líquidos Iônicos , Proteólise , Líquidos Iônicos/química , Líquidos Iônicos/síntese química , Ubiquitina-Proteína Ligases/metabolismo , SARS-CoV-2 , Amidas/química , Amidas/síntese química , Humanos , Ligantes , Estrutura Molecular , Antivirais/química , Antivirais/síntese química , Antivirais/farmacologia , Quimera de Direcionamento de Proteólise
2.
Org Biomol Chem ; 22(4): 767-783, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38167738

RESUMO

Among the eight different triazolopyrimidine isomers existing in nature, 1,2,4-triazolo[1,5-a]pyrimidine (TZP) is one of the most studied and used isomers in medicinal chemistry. For some years, our group has been involved in developing regioselective one-pot procedures for the synthesis of 2-amino-7-aryl-5-methyl- and 2-amino-5-aryl-7-methyl-TZPs of interest in the preparation of antiviral agents. In this work, taking advantage of a Biginelli-like multicomponent reaction (MCR), we report the identification of finely tunable conditions to regioselectively synthesize C-6 ester-substituted amino-TZP analogues, both in dihydro and oxidized forms. Indeed, the use of mild acidic conditions is strongly directed toward the regioselective synthesis of 5-aryl-7-methyl C-6-substituted TZP analogues, while the use of neutral ionic liquids shifted the regioselectivity towards 7-aryl-5-methyl derivatives. In addition, the novel synthesized scaffolds were functionalized at the C-2 position and evaluated for their antiviral activity against RNA viruses (influenza virus, flaviviruses, and SARS-CoV-2). Compounds 25 and 26 emerged as promising anti-flavivirus agents, showing activity in the low micromolar range.


Assuntos
Líquidos Iônicos , Isomerismo , Pirimidinas/química , Estereoisomerismo
3.
J Phys Chem B ; 128(5): 1241-1255, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38285636

RESUMO

Some features of the human nervous system can be mimicked not only through software or hardware but also through liquid solutions of chemical systems maintained under out-of-equilibrium conditions. We describe the possibility of exploiting a thin layer of the Belousov-Zhabotinsky (BZ) reaction as a surrogate for the cochlea for sensing acoustic frequencies. Experiments and simulations demonstrate that, as in the human ear where the cochlea transduces the mechanical energy of the acoustic frequencies into the electrochemical energy of neural action potentials and the basilar membrane originates topographic representations of sounds, our bioinspired chemoacoustic system, based on the BZ reaction, gives rise to spatiotemporal patterns as the representation of distinct acoustic bands through transduction of mechanical energy into chemical energy. Acoustic frequencies in the range 10-2000 Hz are partitioned into seven distinct bands based on three attributes of the emerging spatiotemporal patterns: (1) the types and frequencies of the chemical waves, (2) their velocities, and (3) the Faraday waves' wavelengths.


Assuntos
Acústica , Cóclea , Humanos , Cóclea/fisiologia , Software
4.
Molecules ; 28(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770849

RESUMO

Photochromic compounds are employed in implementing neuron surrogates. They will boost the development of neuromorphic engineering in wetware. In this work, the photochromic behaviours of (E)-3,4,6-trichloro-2-(p-diazenil)-phenol (t-DZH) and its conjugated phenoxide base (t-DZ) have been investigated experimentally in three different media: (1) pure acetonitrile, (2) in water and acetonitrile mixed in a 1/1 volume ratio, and (3) in an aqueous micellar solution of 3-(N,N-Dimethylmyristylammonio)propanesulfonate (SB3-14). The analysis of the spectral and kinetic features of t-DZH and t-DZ has been supported by quantum-mechanical DFT calculations, the maximum entropy method, and the determination of their colourability (C). The versatility of t-DZH and t-DZ makes them promising molecular probes of micro-environments and potential ingredients of photochemical oscillators required for implementing pacemaker neurons capable of communicating through optical signals in wetware.

5.
ACS Omega ; 7(32): 27980-27990, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35990467

RESUMO

Deoxydehydration (DODH) reaction of glycerol (GL) and 1,2-propanediol (1,2-PD), in ionic liquids (ILs), catalyzed by methyltrioxorhenium (MTO) and Re2O7, was studied in detail. To better understand the ability of ILs to improve the catalytic performance of the rhenium catalyst, several experiments, employing eight different cations and two different anions, were carried out. Among the anions, bis(trifluoromethylsulfonyl)imide (TFSI) appears to be more appropriate than PF6 -, for its relatively lower volatility of the resulting IL. Regarding the choice of the most appropriate cation, the presence of a single aromatic ring seems to be a necessary requirement for a satisfying and convenient reactivity. With the aim to extend the recyclability of the catalyst, experiments involving the readdition of polyol to the terminal reaction mixture were carried out. Worthy of interest is the fact that the presence of the IL prevents the inertization process of the catalyst, allowing us to obtain the alkene also after a readdition of fresh polyol.

6.
Materials (Basel) ; 14(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34771995

RESUMO

Deep Eutectic Solvents (DESs) are experiencing growing interest as substitutes of polluting organic solvents for their low or absent toxicity and volatility. Moreover, they can be formed with natural bioavailable and biodegradable molecules; they are synthesized in absence of hazardous solvents. DESs are, inter alia, successfully used for the extraction/preconcentration of biofunctional molecules from complex vegetal matrices. Onion skin is a highly abundant waste material which represents a reservoir of molecules endowed with valuable biological properties such as quercetin and its glycosylated forms. An efficient extraction of these molecules from dry onion skin from "Dorata di Parma" cultivar was obtained with water dilution of acid-based DESs. Glycolic acid (with betaine 2/1 molar ratio and L-Proline 3/1 molar ratio as counterparts) and of p-toluensulphonic acid (with benzyltrimethylammonium methanesulfonate 1/1 molar ratio)-based DESs exhibited more than 3-fold higher extraction efficiency than methanol (14.79 µg/mL, 18.56 µg/mL, 14.83 µg/mL vs. 5.84 µg/mL, respectively). The extracted quercetin was also recovered efficaciously (81% of recovery) from the original extraction mixture. The proposed extraction protocol revealed to be green, efficacious and selective for the extraction of quercetin from onion skin and it could be useful for the development of other extraction procedures from other biological matrixes.

7.
Phys Chem Chem Phys ; 23(31): 16739-16753, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34318828

RESUMO

Two symmetric quadrupolar cationic push-pull compounds with a central electron-acceptor (N+-methylpyrydinium, A+) and different lateral electron-donors, (N,N-dimethylamino and N,N-diphenylamino, D) in a D-π-A+-π-D arrangement, were investigated together with their dipolar counterparts (D-π-A+) for their excited-state dynamics and NLO properties. As for the quadrupolar compounds, attention was focused on excited-state symmetry breaking (ESSB), which leads to a relaxed dipolar excited state. Both electron charge displacements and structural rearrangements were recognized in the excited-state dynamics of these molecules by resorting to femtosecond-resolved broadband fluorescence up-conversion experiments and advanced data analysis, used as a valuable alternative approach for fluorescent molecules compared to time-resolved IR spectroscopy, only suitable for compounds bearing IR markers. Specifically, intramolecular charge transfer (ICT) was found to be guided by ultrafast inertial solvation, while diffusive solvation can drive the twisting of lateral groups to originate twisted-ICT (TICT) states on a picosecond time scale. Yet still, only the bis-N,N-diphenylamino-substituted compound undergoes ESSB, in both highly and sparingly polar solvents, provided that it can experience large amplitude motions to a fully symmetry-broken TICT state. Besides well-known solvation effects, this structural requirement proved to be a necessary condition for these quadrupolar cations to undergo ESSB. In fact, a more efficient uncoupling between the out-of-plane D and A+ groups in the TICT state allows a greater stabilization gained through solvation, relative to the bis-N,N-dimethylamino-substituted derivative, which instead maintains its symmetry. This different behavior parallels the two-photon absorption (TPA) ability, which is greatly enhanced in the case of the bis-N,N-diphenylamino-substituted compound, paving the way for cutting-edge bio-imaging applications.

8.
Carbohydr Polym ; 251: 117106, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33142643

RESUMO

In this work, chitosan-succinic acid membranes were prepared by casting method and the physicochemical and mechanical properties of non-neutralized and neutralized with NaOH films were compared. Mechanical strength, flexibility, thermal stability and water-vapor permeability of chitosan membranes are significantly improved after neutralization. These improvements could be partly ascribed to the use of a dicarboxylic acid, which decreases the spacing between chitosan chains as a consequence of ionic crosslinking. Moreover, the addition of the strong base to the hydrogel promotes the formation of amide bonds, as suggested by FTIR analysis and demonstrated by acid-base titration. The favorable features of chitosan-succinic acid films as well as the possibility to easily incorporate drugs, enzymes, essential oils or other additives in the hydrogel, make such membranes suitable for many applications.

9.
Antioxidants (Basel) ; 9(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126625

RESUMO

To improve the loadability and antioxidant properties of wool impregnated with onion skin extract, the introduction of SB3-14 surfactant in the dyeing process was evaluated. A preliminary investigation on the surfactant-quercetin interaction indicated that the optimal conditions for dye solubility, stability, and surfactant affinity require double-distilled water (pH = 5.5) as a medium and SB3-14 in a concentration above the c.m.c. (2.5 × 10-3 M). The absorption profile of textiles showed the flavonoid absorption band (390 nm) and a bathochromic feature (510 nm), suggesting flavonoid aggregates. The higher absorbance for the sample dyed with SB3-14 indicated greater dye uptake, which was further confirmed by HPLC analysis. The Folin-Ciocalteu method was applied to evaluate the total phenol content (TPC) released from the treated wool, while the assays FRAP, DPPH, ABTS, and ORAC were applied to evaluate the corresponding total antioxidant activity (TAC). Higher TPCs (about 20%) and TACs (5-55%) were measured with SB3-14, highlighting textiles with improved biofunctional properties. Spectrophotometric analyses were also performed with an artificial sweat. The potential cytotoxic effect of SB3-14 in both monomeric and aggregated forms, cell viability, and induction of apoptosis were evaluated in RAW 264.7 cells. These analyses revealed that SB3-14 is safe at concentrations below the c.m.c.

10.
Molecules ; 24(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925810

RESUMO

Background: Galium is a plant rich in iridoid glycosides, flavonoids, anthraquinones, and small amounts of essential oils and vitamin C. Recent works showed the antibacterial, antifungal, antiparasitic, and antioxidant activity of this plant genus. Methods: For the determination of the multicomponent phenolic pattern, liquid phase microextraction procedures were applied, combined with HPLC-PDA instrument configuration in five Galium species aerial parts (G. verum, G. album, G. rivale, G. pseudoaristatum, and G. purpureum). Dispersive Liquid⁻Liquid MicroExtraction (DLLME) with NaCl and NAtural Deep Eutectic Solvent (NADES) medium and Ultrasound-Assisted (UA)-DLLME with ß-cyclodextrin medium were optimized. Results: The optimal DLLME conditions were found to be: 10 mg of the sample, 10% NaCl, 15% NADES or 1% ß-cyclodextrin as extraction solvent-400 µL of ethyl acetate as dispersive solvent-300 µL of ethanol, vortex time-30 s, extraction time-1 min, centrifugation at 12000× g for 5 min. Conclusions: These results were compared with microwave-assisted extraction procedures. G. purpureum and G. verum extracts showed the highest total phenolic and flavonoid content, respectively. The most potent extract in terms of antioxidant capacity was obtained from G. purpureum, whereas the extract obtained from G. album exhibited the strongest inhibitory effect against tyrosinase.


Assuntos
Bioensaio/métodos , Galium/química , Microextração em Fase Líquida/métodos , Micro-Ondas , Fenóis/isolamento & purificação , Flavonoides/análise
11.
Int J Mol Sci ; 20(6)2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30889901

RESUMO

The monocarbonyl analogue of curcumin (1E,4E)-1,5-Bis(2-methoxyphenyl)penta-1,4-dien-3-one (C1) has been used as a specific activator of the master gene transcription factor EB (TFEB) to correlate the activation of this nuclear factor with the increased activity of lysosomal glycohydrolases and their recruitment to the cell surface. The presence of active lysosomal glycohydrolases associated with the lipid microdomains has been extensively demonstrated, and their role in glycosphingolipid (GSL) remodeling in both physiological and pathological conditions, such as neurodegenerative disorders, has been suggested. Here, we demonstrate that Jurkat cell stimulation elicits TFEB nuclear translocation and an increase of both the expression of hexosaminidase subunit beta (HEXB), hexosaminidase subunit alpha (HEXA), and galactosidase beta 1 (GLB1) genes, and the recruitment of ß-hexosaminidase (Hex, EC 3.2.1.52) and ß-galactosidase (Gal, EC 3.2.1.23) on lipid microdomains. Treatment of Jurkat cells with the curcumin analogue C1 also resulted in an increase of both lysosomal glycohydrolase activity and their targeting to the cell surface. Similar effects of C1 on lysosomal glycohydrolase expression and their recruitment to lipid microdomains was observed by treating the SH-SY5Y neuroblastoma cell line; the effects of C1 treatment were abolished by TFEB silencing. Together, these results clearly demonstrate the existence of a direct link between TFEB nuclear translocation and the transport of Hex and Gal from lysosomes to the plasma membrane.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Membrana Celular/metabolismo , Curcumina/análogos & derivados , Curcumina/farmacologia , Hexosaminidases/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , beta-Galactosidase/metabolismo , Membrana Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Exocitose/efeitos dos fármacos , Humanos , Células Jurkat , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Fito-Hemaglutininas/farmacologia , Transporte Proteico/efeitos dos fármacos
12.
Langmuir ; 34(38): 11510-11517, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30152702

RESUMO

In this work, we present the effects of ionic and zwitterionic surfactants on the hydrolytic activity of Candida rugosa lipase (CRL), one of the most important and widely used microbial lipases. A series of amine N-oxide surfactants was studied to explore the relationship between their molecular structures and their effect on catalytic properties of CRL. These zwitterionic amphiphiles are known for their ability to form aggregates that can increase their size, thanks to a sphere-rod transition, without any additive. Enzyme activity seemed to be improved by morphological changes of micelles from spherical to rod-like, and the structure of the monomers played a crucial role in this transition. In fact, all the amine oxides investigated provoked superactivation, but the CRL activity increased by lengthening the alkyl chain of N-oxide surfactants, whereas it decreased in the presence of bulky head groups. Superactivity was mainly because of an increase in kcat (0.57 s-1 in buffer, 0.80-1.99 s-1 in surfactant solutions) and, in some cases, a decrease in KM (2 × 10-3 M in buffer, 1.08-4.28 × 10-3 M in surfactant solutions). Micelles seemed to play a dual role: superactivity occurred at surfactant concentrations higher than their critical micelle concentration, but, on the other hand, micelles subtracted the substrate from the bulk, making it unavailable for the catalysis.


Assuntos
Lipase/química , Compostos de Amônio Quaternário/química , Dodecilsulfato de Sódio/química , Tensoativos/química , Candida/enzimologia , Catálise/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Estrutura Molecular
13.
J Colloid Interface Sci ; 516: 224-231, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29408108

RESUMO

HYPOTHESIS: Clathrate hydrates of hydrogen form at relatively low pressures (e.g., ca. 10 MPa) when a co-former compound is added. In that case, however, the gravimetric amount of stored hydrogen drops to less than 1 wt% from ca. 5.6 wt% without a co-former. Another factor hindering the entrapment of hydrogen into a clathrate matrix appears to be of a kinetic origin, in that the mass transfer of hydrogen into clathrates is limited by the macroscopic scale of the gas-water interfaces involved in their formation. Thus, the enhanced formation of binary (hydrogen + co-former) hydrates would represent a major achievement in the attempt to exploit those materials as a convenient means for storing hydrogen. EXPERIMENTS: Here, we present a simple process for the enhanced formation of binary hydrates of hydrogen and several co-formers, which is based on the use of reverse micelles for reducing the size of hydrate-forming gas-water interfaces down to tens of nanometers. This reduction of particle size allowed us to reduce the kinetic hindrance to hydrate formation. FINDINGS: The present process was able to (i) enhance the kinetics of the formation process; and (ii) assist clathrate formation when using water-insoluble coformers (e.g., cyclopentane, tetrahydrothiophene).

14.
Phytochem Anal ; 29(3): 233-241, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29143440

RESUMO

INTRODUCTION: For the determination of harpagoside and the wide phenolic pattern in Harpagophytum procumbens root and its commercial food supplements, dispersive liquid-liquid microextraction (DLLME), ultrasound-assisted DLLME (UA-DLLME), and sugaring-out liquid-liquid extraction (SULLE) were tested and compared. OBJECTIVES: In order to optimise the extraction efficiency, DLLME and UA-DLLME were performed in different solvents (water and aqueous solutions of glucose, ß-cyclodextrin, (2-hydroxypropyl)-ß-cyclodextrin, sodium chloride, natural deep eutectic solvent, and ionic liquid). MATERIAL AND METHODS: The plant material was ground and sieved to obtain a uniform granulometry before extraction. Commercial food supplements, containing H. procumbens are commercially available in Italy. RESULTS: The most effective sodium chloride-aided-DLLME was then optimised and applied for analyses followed by HPLC-PDA. For comparison, microwave-assisted extraction was performed using the same solvents and the best results were obtained using 1% of ß-cyclodextrin or 15% of sodium chloride. CONCLUSION: All commercial samples respected the European Pharmacopoeia monograph for this plant material, showing a harpagoside content ≥ 1.2%. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Suplementos Nutricionais/análise , Glicosídeos/análise , Harpagophytum/química , Microextração em Fase Líquida/métodos , Fenóis/análise , Raízes de Plantas/química , Piranos/análise , 2-Hidroxipropil-beta-Ciclodextrina/química , Cromatografia Líquida de Alta Pressão/métodos , Glucose/química , Itália , Limite de Detecção , Micro-Ondas , Cloreto de Sódio/química , Solventes/química , Água/química
15.
Food Chem ; 245: 578-585, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29287412

RESUMO

A green dispersive liquid-liquid microextraction (DLLME) using deep eutectic solvent (DES) as the extracting solvent has been developed and applied for the simultaneous quantification of ferulic acid, umbelliferone, boropinic acid, 7-isopentenyloxycoumarin, 4'-geranyloxyferulic acid (GOFA), and auraptene in some vegetable oils using ultra high performance liquid chromatography (UHPLC) with photodiode array detection (PDA). All parameters in the extraction step, including selection and loading of both extracting and dispersing solvents, amount of both extractant and disperser solvent were investigated and optimized. PhAA/TMG DES achieved higher recovery and enrichment factor compared to other DESs. The validated method showed good linearity with correlation coefficients, r2>0.9990 for all the analytes. Furthermore, this is the first time that eco-friendly solvents are used for the extraction of oxyprenylated phenylpropanoids and the corresponding extract analyzed with ultra high performance liquid chromatography with photodiode array detection.


Assuntos
Arachis/química , Helianthus/química , Microextração em Fase Líquida/métodos , Olea/química , Extratos Vegetais/isolamento & purificação , Óleos de Plantas/química , Zea mays/química , Cromatografia Líquida de Alta Pressão/métodos , Ácidos Cumáricos/análise , Ácidos Cumáricos/isolamento & purificação , Cumarínicos/análise , Cumarínicos/isolamento & purificação , Extratos Vegetais/análise , Umbeliferonas/análise , Umbeliferonas/isolamento & purificação
16.
Angew Chem Int Ed Engl ; 56(26): 7535-7540, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28560808

RESUMO

Neuromorphic engineering promises to have a revolutionary impact in our societies. A strategy to develop artificial neurons (ANs) is to use oscillatory and excitable chemical systems. Herein, we use UV and visible radiation as both excitatory and inhibitory signals for the communication among oscillatory reactions, such as the Belousov-Zhabotinsky and the chemiluminescent Orban transformations, and photo-excitable photochromic and fluorescent species. We present the experimental results and the simulations regarding pairs of ANs communicating by either one or two optical signals, and triads of ANs arranged in both feed-forward and recurrent networks. We find that the ANs, powered chemically and/or by the energy of electromagnetic radiation, can give rise to the emergent properties of in-phase, out-of-phase, anti-phase synchronizations and phase-locking, dynamically mimicking the communication among real neurons.


Assuntos
Luz , Modelos Biológicos , Neurônios/efeitos da radiação , Raios Ultravioleta , Fluorescência , Transdução de Sinal Luminoso , Neurônios/citologia
17.
Langmuir ; 32(4): 1101-10, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26752694

RESUMO

Zwitterionic sulfobetaine surfactants are used in pharmaceutical or biomedical applications for the solubilization and delivery of hydrophobic molecules in aqueous medium or in biological environments. In a screening on the biocidal activity of synthetic surfactants on microbial cells, remarkable results have emerged with sulfobetaine amphiphiles. The interaction between eight zwitterionic sulfobetaine amphiphiles and Saccharomyces cerevisiae model cells was therefore analyzed. S. cerevisiae yeast cells were chosen, as they are a widely used unicellular eukaryotic model organism in cell biology. Conductivity measurements were used to investigate the interaction between surfactant solution and cells. Viable counts measurements were performed, and the mortality data correlated with the conductivity profiles very well, in terms of the inflection points (IPs) observed in the curves and in terms of supramolecular properties of the aggregates. A Fourier transform infrared (FTIR)-based bioassay was then performed to determine the metabolomic stress-response of the cells subjected to the action of zwitterionic surfactants. The surfactants showed nodal concentration (IPs) with all the techniques in their activities, corresponding to the critical micellar concentrations of the amphiphiles. This is due to the pseudocationic behavior of sulfobetaine micelles, because of their charge distribution and charge densities. This behavior permits the interaction of the micellar aggregates with the cells, and the structure of the surfactant monomers has impact on the mortality and the metabolomic response data observed. On the other hand, the concentrations that are necessary to provoke a biocidal activity do not promote these amphiphiles as potential antimicrobial agents. In fact, they are much higher than the ones of cationic surfactants.


Assuntos
Betaína/análogos & derivados , Betaína/farmacologia , Desinfetantes/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Tensoativos/farmacologia , Betaína/química , Condutometria , Desinfetantes/química , Condutividade Elétrica , Micelas , Saccharomyces cerevisiae/citologia , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos/química
18.
Colloids Surf B Biointerfaces ; 136: 175-84, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26387069

RESUMO

Drug-induced phospholipidosis indicates an accumulation of phospholipids within lysosomes, which can occur during therapeutic treatment. Whether or not phospholipidosis represents a toxicological phenomenon is still under investigation, and in the last decade the Food and Drug Administration has been raising concerns about the possible consequences of this adverse event. Cationic amphiphilic drugs represent the majority of phospholipidosis inducers, followed by aminoglycoside and macrolide antibiotics. Although the mechanism of phospholipidosis induction is still uncertain, the interaction of drugs with phospholipids in the lysosomal membrane represents a key step. Therefore, the study of the drug/lipid complex formation will provide valuable insight into the causation of phospholipidosis at the molecular level and to identify the potential phospholipidosis risk associated with drug. In this study, we investigated the insertion profile of eleven drugs with known phospholipidosis effect into preformed Langmuir monolayers of various lipid compositions, to evaluate for the first time the drug/lipid interaction for phospholipidosis inducers and non-inducers in a dynamic approach. We found that the addition of dipalmitoylphosphatidylserine (DPPS) to dipalmitoylphosphatidylcholine (DPPC) to form the lipid monolayer allowed a clear identification of the phospholipidosis effect of the selected drugs based on the variation of the surface pressure, not only for cationic amphiphilic drugs but also for the aminoglycoside and the macrolide antiobiotics tested. Compared to a standard PAMPA assay, the new method appears to be more effective for the study of poorly soluble drugs.


Assuntos
Lipidoses/induzido quimicamente , Preparações Farmacêuticas , Fosfolipídeos/metabolismo , Adsorção , Lipidoses/metabolismo , Membranas Artificiais , Permeabilidade , Fosfolipídeos/química , Tensão Superficial , Temperatura
19.
PLoS One ; 10(1): e0115275, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25588017

RESUMO

Surfactants are extremely important agents to clean and sanitize various environments. Their biocidal activity is a key factor determined by the interactions between amphiphile structure and the target microbial cells. The object of this study was to analyze the interactions between four structural variants of N-alkyltropinium bromide surfactants with the Gram negative Escherichia coli and the Gram positive Listeria innocua bacteria. Microbiological and conductometric methods with a previously described FTIR bioassay were used to assess the metabolomic damage exerted by these compounds. All surfactants tested showed more biocidal activity in L. innocua than in E. coli. N-tetradecyltropinium bromide was the most effective compound against both species, while all the other variants had a reduced efficacy as biocides, mainly against E. coli cells. In general, the most prominent metabolomic response was observed for the constituents of the cell envelope in the fatty acids (W1) and amides (W2) regions and at the wavenumbers referred to peptidoglycan (W2 and W3 regions). This response was particularly strong and negative in L. innocua, when cells were challenged by N-tetradecyltropinium bromide, and by the variant with a smaller head and a 12C tail (N-dodecylquinuclidinium bromide). Tail length was critical for microbial inhibition especially when acting against E. coli, maybe due the complex nature of Gram negative cell envelope. Statistical analysis allowed us to correlate the induced mortality with the metabolomic cell response, highlighting two different modes of action. In general, gaining insights in the interactions between fine structural properties of surfactants and the microbial diversity can allow tailoring these compounds for the various operative conditions.


Assuntos
Brometos/farmacologia , Desinfetantes/farmacologia , Escherichia coli/efeitos dos fármacos , Listeria/efeitos dos fármacos , Tensoativos/farmacologia , Membrana Celular/efeitos dos fármacos , Metabolômica , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier
20.
J Phys Chem B ; 119(4): 1483-95, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25545705

RESUMO

Photophysical properties of some azinium iodides in aqueous solution of nanostructured systems as DNA and nonionic micelles were investigated using steady-state and ultrafast time-resolved spectroscopy. Spectrophotometric and fluorimetric titrations of the investigated compounds with salmon testes DNA supplied evidence of a good interaction between the salts and DNA with binding constants of 10(4)-10(6) M(-1), making them interesting for pharmaceutical applications. The interaction with DNA also changes the photobehavior of the compounds, increasing the radiative deactivation pathway to the detriment of internal conversion and slowing down the excited state dynamics. The interaction of the azinium salts with the nonionic surfactant Triton X-100 from premicellar to postmicellar concentration was studied by spectrophotometric and fluorimetric titrations evidencing the ability of the micelles to associate the studied salts in their hydrophobic portion and to release them in the presence of DNA, acting as promising drug carriers. Also transient absorption spectroscopy with femtosecond resolution demonstrated the insertion of the investigated compounds into micellar aggregates. Preliminary measurements by confocal fluorescence microscopy on MCF-7 cells in the presence of the studied azinium salts showed that they are able to cross the cellular membrane and that their cytotoxicity can be expressed through interaction with DNA (RNA). In fact, they showed a significant fluorescence signal in all cell compartments, particularly (for 2 and 3) into punctuate structures within the nuclei compatible with a localization into the nucleoli.


Assuntos
Antineoplásicos/química , Antineoplásicos/metabolismo , DNA/química , DNA/metabolismo , Micelas , Espectrometria de Fluorescência , Feminino , Humanos , Células MCF-7 , Microscopia Confocal , Modelos Biológicos , Estrutura Molecular , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...