Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Structure ; 32(1): 83-96.e4, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38042148

RESUMO

Nucleobases such as inosine have been extensively utilized to map direct contacts by proteins in the DNA groove. Their deployment as targeted probes of dynamics and hydration, which are dominant thermodynamic drivers of affinity and specificity, has been limited by a paucity of suitable experimental models. We report a joint crystallographic, thermodynamic, and computational study of the bidentate complex of the arginine side chain with a Watson-Crick guanine (Arg×GC), a highly specific configuration adopted by major transcription factors throughout the eukaryotic branches in the Tree of Life. Using the ETS-family factor PU.1 as a high-resolution structural framework, inosine substitution for guanine resulted in a sharp dissection of conformational dynamics and hydration and elucidated their role in the DNA specificity of PU.1. Our work suggests an under-exploited utility of modified nucleobases in untangling the structural thermodynamics of interactions, such as the Arg×GC motif, where direct and indirect readout are tightly integrated.


Assuntos
Proteínas Proto-Oncogênicas , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Sítios de Ligação , Ligação Proteica , Proteínas Proto-Oncogênicas/química , Termodinâmica , DNA/metabolismo , Guanina , Inosina/metabolismo , Conformação de Ácido Nucleico
2.
Life (Basel) ; 12(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35629334

RESUMO

Fixed-charge (non-polarizable) forcefields are accurate and computationally efficient tools for modeling the molecular dynamics of nucleic acid polymers, particularly DNA, well into the µs timescale. The continued utility of these forcefields depends in part on expanding the residue set in step with advancing nucleic acid chemistry and biology. A key step in parameterizing new residues is charge derivation which is self-consistent with the existing residues. As atomic charges are derived by fitting against molecular electrostatic potentials, appropriate structural models are critical. Benchmarking against the existing charge set used in current AMBER nucleic acid forcefields, we report that quantum mechanical models of deoxynucleosides, even at a high level of theory, are not optimal structures for charge derivation. Instead, structures from molecular mechanics minimization yield charges with up to 6-fold lower RMS deviation from the published values, due to the choice of such an approach in the derivation of the original charge set. We present a contemporary protocol for rendering self-consistent charges as well as optimized charges for a panel of nine non-canonical residues that will permit comparison with literature as well as studying the dynamics of novel DNA polymers.

3.
Biochemistry ; 60(9): 711-724, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33630571

RESUMO

Proteins are inherently dynamic, and proper enzyme function relies on conformational flexibility. In this study, we demonstrated how an active site residue changes an enzyme's reactivity by modulating fluctuations between conformational states. Replacement of tyrosine 249 (Y249) with phenylalanine in the active site of the flavin-dependent d-arginine dehydrogenase yielded an enzyme with both an active yellow FAD (Y249F-y) and an inactive chemically modified green FAD, identified as 6-OH-FAD (Y249F-g) through various spectroscopic techniques. Structural investigation of Y249F-g and Y249F-y variants by comparison to the wild-type enzyme showed no differences in the overall protein structure and fold. A closer observation of the active site of the Y249F-y enzyme revealed an alternative conformation for some active site residues and the flavin cofactor. Molecular dynamics simulations probed the alternate conformations observed in the Y249F-y enzyme structure and showed that the enzyme variant with FAD samples a metastable conformational state, not available to the wild-type enzyme. Hybrid quantum/molecular mechanical calculations identified differences in flavin electronics between the wild type and the alternate conformation of the Y249F-y enzyme. The computational studies further indicated that the alternate conformation in the Y249F-y enzyme is responsible for the higher spin density at the C6 atom of flavin, which is consistent with the formation of 6-OH-FAD in the variant enzyme. The observations in this study are consistent with an alternate conformational space that results in fine-tuning the microenvironment around a versatile cofactor playing a critical role in enzyme function.


Assuntos
Aminoácido Oxirredutases/química , Aminoácido Oxirredutases/metabolismo , Flavinas/metabolismo , Fenilalanina/química , Mutação Puntual , Pseudomonas aeruginosa/enzimologia , Tirosina/química , Aminoácido Oxirredutases/genética , Sítios de Ligação , Catálise , Domínio Catalítico , Cinética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Fenilalanina/genética , Fenilalanina/metabolismo , Conformação Proteica , Tirosina/genética , Tirosina/metabolismo
4.
Sci Adv ; 6(8): eaay3178, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32128405

RESUMO

Transcription factors comprise a major reservoir of conformational disorder in the eukaryotic proteome. The hematopoietic master regulator PU.1 presents a well-defined model of the most common configuration of intrinsically disordered regions (IDRs) in transcription factors. We report that the structured DNA binding domain (DBD) of PU.1 regulates gene expression via antagonistic dimeric states that are reciprocally controlled by cognate DNA on the one hand and by its proximal anionic IDR on the other. The two conformers are mediated by distinct regions of the DBD without structured contributions from the tethered IDRs. Unlike DNA-bound complexes, the unbound dimer is markedly destabilized. Dimerization without DNA is promoted by progressive phosphomimetic substitutions of IDR residues that are phosphorylated in immune activation and stimulated by anionic crowding agents. These results suggest a previously unidentified, nonstructural role for charged IDRs in conformational control by mitigating electrostatic penalties that would mask the interactions of highly cationic DBDs.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Multimerização Proteica , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , DNA/metabolismo , Retroalimentação Fisiológica , Humanos , Proteínas Intrinsicamente Desordenadas/química , Mutação/genética , Conformação Proteica , Domínios Proteicos , Estabilidade Proteica , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Espectroscopia de Prótons por Ressonância Magnética , Eletricidade Estática , Transativadores/química , Transativadores/genética , Ativação Transcricional
5.
Bioconjug Chem ; 30(10): 2647-2663, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31518105

RESUMO

G-Quadruplex DNA has been recognized as a highly appealing target for the development of new selective chemotherapeutics, which could result in markedly reduced toxicity toward normal cells. In particular, the cyanine dyes that bind selectively to G-quadruplex structures without targeting duplex DNA have attracted attention due to their high amenability to structural modifications that allows fine-tuning of their biomolecular interactions. We have previously reported pentamethine and symmetric trimethine cyanines designed to effectively bind G-quadruplexes through end stacking interactions. Herein, we are reporting a second generation of drug candidates, the asymmetric trimethine cyanines. These have been synthesized and evaluated for their quadruplex binding properties. Incorporating a benz[c,d]indolenine heterocyclic unit increased overall quadruplex binding, and elongating the alkyl length increases the quadruplex-to-duplex binding specificity.


Assuntos
Alcinos/química , Alcinos/farmacologia , Quadruplex G/efeitos dos fármacos , Sequência de Bases , DNA/química , DNA/genética , Desenho de Fármacos , Indóis/química , Modelos Moleculares
6.
Curr Protoc Nucleic Acid Chem ; 72(1): 7.28.1-7.28.39, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29927124

RESUMO

NMR spectroscopy is a versatile tool for determining the structure and dynamics of nucleic acids under solution conditions. In this unit, we provide an overview and detail of the experiments and methods used in our laboratory to determine the structure of oligonucleotides at natural abundance, thus limiting our approach to 1 H, 13 C, and 31 P NMR techniques. Isotopic labeling is heavily used in RNA NMR studies, however, labeling of DNA is still less common and, if modified nucleotides are investigated, is exceptionally expensive or not feasible. Each method described here is extensively documented and annotated with tips and observations to facilitate their application. Sections are devoted to sample preparation, NMR experiments and setup, resonance assignment, structure generation protocols, evaluation, tips that may be useful, and software sources. © 2018 by John Wiley & Sons, Inc.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Algoritmos , Simulação de Dinâmica Molecular
7.
Chemistry ; 23(69): 17612-17620, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29044822

RESUMO

The high-resolution NMR structure of the first heterocyclic, non-amide, organic cation that strongly and selectively recognizes mixed AT/GC bp (bp=base pair) sequences of DNA in a 1:1 complex is described. Compound designs of this type provide essential methods for control of functional, non-genomic DNA sequences and have broad cell uptake capability, based on studies from animals to humans. The high-resolution structural studies described in this report are essential for understanding the molecular basis for the sequence-specific binding as well as for new ideas for additional compound designs for sequence-specific recognition. The molecular features, in this report, explain the mechanism of recognition of both A⋅T and G⋅C bps and are an interesting molecular recognition story. Examination of the experimental structure and the NMR restrained molecular dynamics model suggests that recognition of the G⋅C base pair involves two specific H-bonds. The structure illustrates a wealth of information on different DNA interactions and illustrates an interfacial water molecule that is a key component of the complex.


Assuntos
DNA/química , Compostos Heterocíclicos/química , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Cátions/química , DNA/metabolismo , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico
8.
J Biol Chem ; 292(39): 16044-16054, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28790174

RESUMO

The eponymous DNA-binding domain of ETS (E26 transformation-specific) transcription factors binds a single sequence-specific site as a monomer over a single helical turn. Following our previous observation by titration calorimetry that the ETS member PU.1 dimerizes sequentially at a single sequence-specific DNA-binding site to form a 2:1 complex, we have carried out an extensive spectroscopic and biochemical characterization of site-specific PU.1 ETS complexes. Whereas 10 bp of DNA was sufficient to support PU.1 binding as a monomer, additional flanking bases were required to invoke sequential dimerization of the bound protein. NMR spectroscopy revealed a marked loss of signal intensity in the 2:1 complex, and mutational analysis implicated the distal surface away from the bound DNA as the dimerization interface. Hydroxyl radical DNA footprinting indicated that the site-specifically bound PU.1 dimers occupied an extended DNA interface downstream from the 5'-GGAA-3' core consensus relative to its 1:1 counterpart, thus explaining the apparent site size requirement for sequential dimerization. The site-specifically bound PU.1 dimer resisted competition from nonspecific DNA and showed affinities similar to other functionally significant PU.1 interactions. As sequential dimerization did not occur with the ETS domain of Ets-1, a close structural homolog of PU.1, 2:1 complex formation may represent an alternative autoinhibitory mechanism in the ETS family at the protein-DNA level.


Assuntos
DNA/metabolismo , Modelos Moleculares , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Sítios de Ligação , DNA/química , Pegada de DNA , Dimerização , Deleção de Genes , Cinética , Camundongos , Simulação de Dinâmica Molecular , Mutação , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transativadores/química , Transativadores/genética
9.
Anal Chem ; 89(1): 862-870, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27977168

RESUMO

Interactions between nucleic acids and proteins are critical for many cellular processes, and their study is of utmost importance to many areas of biochemistry, cellular biology, and virology. Here, we introduce a new analytical method based on sedimentation velocity (SV) analytical ultracentrifugation, in combination with a novel multiwavelength detector to characterize such interactions. We identified the stoichiometry and molar mass of a complex formed during the interaction of a West Nile virus RNA stem loop structure with the human T cell-restricted intracellular antigen-1 related protein. SV has long been proven as a powerful technique for studying dynamic assembly processes under physiological conditions in solution. Here, we demonstrate, for the first time, how the new multiwavelength technology can be exploited to study protein-RNA interactions, and show how the spectral information derived from the new detector complements the traditional hydrodynamic information from analytical ultracentrifugation. Our method allows the protein and nucleic acid signals to be separated by spectral decomposition such that sedimentation information from each individual species, including any complexes, can be clearly identified based on their spectral signatures. The method presented here extends to any interacting system where the interaction partners are spectrally separable.


Assuntos
Hidrodinâmica , RNA Viral/análise , Antígeno-1 Intracelular de Células T/análise , Ultracentrifugação , Vírus do Nilo Ocidental/química , Humanos
10.
Nucleic Acids Res ; 44(18): 8576-8587, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27566150

RESUMO

A truly universal nucleobase enables a host of novel applications such as simplified templates for PCR primers, randomized sequencing and DNA based devices. A universal base must pair indiscriminately to each of the canonical bases with little or preferably no destabilization of the overall duplex. In reality, many candidates either destabilize the duplex or do not base pair indiscriminatingly. The novel base 8-aza-7-deazaadenine (pyrazolo[3,4-d]pyrimidin- 4-amine) N8-(2'deoxyribonucleoside), a deoxyadenosine analog (UB), pairs with each of the natural DNA bases with little sequence preference. We have utilized NMR complemented with molecular dynamic calculations to characterize the structure and dynamics of a UB incorporated into a DNA duplex. The UB participates in base stacking with little to no perturbation of the local structure yet forms an unusual base pair that samples multiple conformations. These local dynamics result in the complete disappearance of a single UB proton resonance under native conditions. Accommodation of the UB is additionally stabilized via heightened backbone conformational sampling. NMR combined with various computational techniques has allowed for a comprehensive characterization of both structural and dynamic effects of the UB in a DNA duplex and underlines that the UB as a strong candidate for universal base applications.


Assuntos
Adenina/análogos & derivados , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Adenina/química , Adenina/metabolismo , Sequência de Bases , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Glicosídeos/química , Prótons , Termodinâmica , Fatores de Tempo
11.
Chembiochem ; 17(20): 1968-1977, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27504600

RESUMO

Single ribonucleotide intrusions represent the most common nonstandard nucleotide type found incorporated in genomic DNA, yet little is known of their structural impact. This lesion incurs genomic instability in addition to affecting the physical properties of the DNA. To probe for structural and dynamic effects of single ribonucleotides in various sequence contexts-AxC, CxG, and GxC, where x=rG or dG-we report the structures of three single-ribonucleotide-containing DNA duplexes and the corresponding DNA controls. The lesion subtly and locally perturbs the structure asymmetrically on the 3' side of the lesion in both the riboguanosine-containing and the complementary strand of the duplex. The perturbations are mainly restricted to the sugar and phosphodiester backbone. The ribose and 3'-downstream deoxyribose units are predominately in N-type conformation; backbone torsion angles ϵ and/or ζ of the ribonucleotide or upstream deoxyribonucleotide are affected. Depending on the flanking sequences, the C2'-OH group forms hydrogen bonds with the backbone, 3'-neighboring base, and/or sugar. Interestingly, even in similar purine-rG-pyrimidine environments (A-rG-C and G-rG-C), a riboguanosine unit affects DNA in a distinct manner and manifests different hydrogen bonds, which makes generalizations difficult.


Assuntos
DNA/química , Ribonucleotídeos/química , DNA/genética , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Ribonucleotídeos/genética , Termodinâmica
12.
Nucleic Acids Res ; 44(10): 4519-27, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27131382

RESUMO

Sequence-specific binding to DNA is crucial for targeting transcription factor-DNA complexes to modulate gene expression. The heterocyclic diamidine, DB2277, specifically recognizes a single G•C base pair in the minor groove of mixed base pair sequences of the type AAAGTTT. NMR spectroscopy reveals the presence of major and minor species of the bound compound. To understand the principles that determine the binding affinity and orientation in mixed sequences of DNA, over thirty DNA hairpin substrates were examined by NMR and thermal melting. The NMR exchange dynamics between major and minor species shows that the exchange is much faster than compound dissociation determined from biosensor-surface plasmon resonance. Extensive modifications of DNA sequences resulted in a unique DNA sequence with binding site AAGATA that binds DB2277 in a single orientation. A molecular docking result agrees with the model representing rapid flipping of DB2277 between major and minor species. Imino spectral analysis of a (15)N-labeled central G clearly shows the crucial role of the exocyclic amino group of G in sequence-specific recognition. Our results suggest that this approach can be expanded to additional modules for recognition of more sequence-specific DNA complexes. This approach provides substantial information about the sequence-specific, highly efficient, dynamic nature of minor groove binding agents.


Assuntos
DNA/química , DNA/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Pareamento de Bases , Benzamidinas/química , Benzamidinas/metabolismo , Benzimidazóis/química , Benzimidazóis/metabolismo , Sítios de Ligação , Técnicas Biossensoriais , Simulação de Acoplamento Molecular , Prótons , Ressonância de Plasmônio de Superfície
13.
Protein Sci ; 25(2): 479-86, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26540340

RESUMO

Arginine methylation is important in biological systems. Recent studies link the deregulation of protein arginine methyltransferases with certain cancers. To assess the impact of methylation on interaction with other biomolecules, the pKa values of methylated arginine variants were determined using NMR data. The pKa values of monomethylated, symmetrically dimethylated, and asymmetrically dimethylated arginine are similar to the unmodified arginine (14.2 ± 0.4). Although the pKa value has not been significantly affected by methylation, consequences of methylation include changes in charge distribution and steric effects, suggesting alternative mechanisms for recognition.


Assuntos
Arginina/análogos & derivados , Arginina/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Metilação , Modelos Moleculares , Concentração Osmolar
14.
Biochemistry ; 54(2): 413-21, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25478900

RESUMO

Choline oxidase catalyzes the oxidation of choline to glycine betaine through a two-step, four-electron reaction with betaine aldehyde as an intermediate. Oxygen is the final electron acceptor. Alcohol oxidation is initiated by the removal of the substrate hydroxyl proton by an unknown active site residue with a pKa value of ∼7.5. In the crystal structure of the enzyme in complex with glycine betaine, H466 is ≤3.1 Å from the carboxylate oxygen of the reaction product, suggesting a possible role in the proton abstraction reaction catalyzed by the enzyme. H466, along with another potential candidate, H351, was previously mutated to alanine, but this failed to establish if either residue was involved in activation of the substrate. In this study, single variants of choline oxidase with H466 and H351 substituted with glutamine were prepared, purified, and characterized. The kcat and kcat/Km values of the H351Q enzyme in atmospheric oxygen were 45- and 5000-fold lower than those of the wild-type enzyme, respectively, whereas the H466Q enzyme was inactive when assayed polarographically with choline. In the H466Q enzyme, the rate constant for anaerobic flavin reduction (kred) with choline was 1 million-fold lower than in the wild-type enzyme. A comparison of the fluorescence, circular dichroism, and (1)H nuclear magnetic resonance spectroscopic properties of the H466Q enzyme and the wild-type enzyme is consistent with the mutation not affecting the topology of the active site or the overall fold of the protein. Thus, the change in the kred value and the lack of oxygen consumption upon mutation of histidine to glutamine are not due to misfolded protein but rather to the variant enzyme being unable to catalyze substrate oxidation. On the basis of the kinetic and spectroscopic results presented here and the recent structural information, we propose that H466 is the residue that activates choline to the alkoxide for the subsequent hydride transfer reaction to the enzyme-bound flavin.


Assuntos
Oxirredutases do Álcool/metabolismo , Álcoois/metabolismo , Arthrobacter/enzimologia , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Substituição de Aminoácidos , Arthrobacter/química , Arthrobacter/genética , Arthrobacter/metabolismo , Betaína/análogos & derivados , Betaína/metabolismo , Domínio Catalítico , Colina/metabolismo , Cristalografia por Raios X , Flavinas/metabolismo , Modelos Moleculares , Oxirredução
15.
J Biomol Struct Dyn ; 33(2): 289-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24558982

RESUMO

Selenomethionine incorporation has proven useful in X-ray crystallography of proteins to obtain phase information. In nucleic acids, the introduction of selenium to different positions is beneficial for solving the phase problem as well, but its addition to the 2' position also significantly enhances the crystal formation. The selenium modification in a single nucleotide shows a preference towards 2'-endo sugar puckering, which is in conflict with existing crystal structures where the duplex incorporated 2'-selenium-modified nucleotide is exclusively found in a 3'-endo conformation. Our work provides a rationale why 2'-selenium modifications facilitate crystallization despite this contradictory behavior.


Assuntos
DNA/química , Nucleosídeos/química , Compostos Organosselênicos/química , Sequência de Bases , Cristalização , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Temperatura de Transição
16.
Nanoscale ; 6(17): 10009-17, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-24992674

RESUMO

The units of RNA, termed ribonucleoside monophosphates (rNMPs), have been recently found as the most abundant defects present in DNA. Despite the relevance, it is largely unknown if and how rNMPs embedded in DNA can change the DNA structure and mechanical properties. Here, we report that rNMPs incorporated in DNA can change the elastic properties of DNA. Atomic force microscopy (AFM)-based single molecule elasticity measurements show that rNMP intrusions in short DNA duplexes can decrease--by 32%--or slightly increase the stretch modulus of DNA molecules for two sequences reported in this study. Molecular dynamics simulations and nuclear magnetic resonance spectroscopy identify a series of significant local structural alterations of DNA containing embedded rNMPs, especially at the rNMPs and nucleotide 3' to the rNMP sites. The demonstrated ability of rNMPs to locally alter DNA mechanical properties and structure may help in understanding how such intrusions impact DNA biological functions and find applications in structural DNA and RNA nanotechnology.


Assuntos
DNA/química , DNA/ultraestrutura , Microscopia de Força Atômica/métodos , Modelos Químicos , Simulação de Dinâmica Molecular , Ribonucleotídeos/química , Simulação por Computador , Módulo de Elasticidade , Conformação de Ácido Nucleico , Estresse Mecânico
17.
PLoS One ; 9(3): e91200, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24625964

RESUMO

Accumulating evidence shows the 26S proteasome is involved in the regulation of gene expression. We and others have demonstrated that proteasome components bind to sites of gene transcription, regulate covalent modifications to histones, and are involved in the assembly of activator complexes in mammalian cells. The mechanisms by which the proteasome influences transcription remain unclear, although prior observations suggest both proteolytic and non-proteolytic activities. Here, we define novel, non-proteolytic, roles for each of the three 19S heterodimers, represented by the 19S ATPases Sug1, S7, and S6a, in mammalian gene expression using the inflammatory gene CIITApIV. These 19S ATPases are recruited to induced CIITApIV promoters and also associate with CIITA coding regions. Additionally, these ATPases interact with elongation factor PTEFb complex members CDK9 and Hexim-1 and with Ser5 phosphorylated RNA Pol II. Both the generation of transcripts from CIITApIV and efficient recruitment of RNA Pol II to CIITApIV are negatively impacted by siRNA mediated knockdown of these 19S ATPases. Together, these results define novel roles for 19S ATPases in mammalian gene expression and indicate roles for these ATPases in promoting transcription processes.


Assuntos
Adenosina Trifosfatases/química , Proteínas Nucleares/química , Transativadores/química , Transcrição Gênica , ATPases Associadas a Diversas Atividades Celulares , Proteínas Adaptadoras de Transdução de Sinal/química , Anticorpos/química , Regulação da Expressão Gênica , Células HeLa , Histonas/química , Humanos , Proteínas com Domínio LIM/química , Complexo de Endopeptidases do Proteassoma/química , Estrutura Terciária de Proteína , RNA Polimerase II/química , RNA Interferente Pequeno/química , Fatores de Transcrição/química
18.
J Am Chem Soc ; 136(8): 3075-86, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24490755

RESUMO

It has been known for decades that alkylammonium ions, such as tetramethyl ammonium (TMA), alter the usual correlation between DNA GC-content and duplex stability. In some cases it is even possible for an AT-rich duplex to be more stable than a GC-rich duplex of the same length. There has been much speculation regarding the origin of this aberration in sequence-dependent DNA duplex stability, but no clear resolution. Using a combination of molecular dynamics simulations and NMR spectroscopy we demonstrate that choline (2-hydroxy-N,N,N-trimethylethanaminium) and TMA are preferentially localized in the minor groove of DNA duplexes at A·T base pairs and these same ions show less pronounced localization in the major groove compared to what has been demonstrated for alkali and alkali earth metal ions. Furthermore, free energy calculations show that single-stranded GC-rich sequences exhibit more favorable solvation by choline than single-stranded AT-rich sequences. The sequence-specific nature of choline and TMA binding provides a rationale for the enhanced stability of AT-rich sequences when alkyl-ammonium ions are used as the counterions of DNA. Our combined theoretical and experimental study provides one of the most detailed pictures to date of cations localized along DNA in the solution state, and provides insights that go beyond understanding alkyl-ammonium ion binding to DNA. In particular, because choline and TMA bind to DNA in a manner that is found to be distinct from that previously reported for Na(+), K(+), Mg(2+), and Ca(2+), our results reveal the important but underappreciated role that most other cations play in sequence-specific duplex stability.


Assuntos
Colina/química , DNA/química , Conformação de Ácido Nucleico , Compostos de Amônio Quaternário/química , Sequência Rica em GC , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular
19.
J Exp Biol ; 217(Pt 8): 1286-96, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24363413

RESUMO

Female blue crabs (Callinectes sapidus) in their pubertal moult stage release unidentified sex pheromone molecules in their urine, causing males to respond with courtship behaviours including a display called courtship stationary paddling and a form of precopulatory guarding called cradle carry. We hypothesized that pheromones are mixtures of molecules and are more concentrated in urine of pubertal premoult females compared with other moulting stages and thus that these molecules are biomarkers (i.e. metabolites that can be used as an indicator of some biological state or condition) of pubertal premoult females. We tested this hypothesis by combining bioassay-guided fractionation and biomarker targeting. To evaluate the molecular mass of the putative pheromone by bioassay-guided fractionation, we separated urine from pubertal premoult females and intermoult males by ultrafiltration into three molecular mass fractions. The <500 Da fraction and the 500-1000 Da fraction but not the >1000 Da fraction of female urine induced male courtship stationary paddling, but none of the fractions of male urine did. Thus, female urine contains molecules of <1000 Da that stimulate courtship behaviours in males. Biomarker targeting using nuclear magnetic resonance (NMR) spectral analysis of the 500-1000 Da fraction of urine from premoult and postmoult males and females revealed a premoult biomarker. Purification, nuclear magnetic resonance, mass spectrometry and high pressure liquid chromatography analysis of this premoult biomarker identified it as N-acetylglucosamino-1,5-lactone (NAGL) and showed that it is more abundant in urine of premoult females and males than in urine of either postmoult or juvenile females and males. NAGL has not been reported before as a natural product or as a molecule of the chitin metabolic pathway. Physiological and behavioural experiments demonstrated that blue crabs can detect NAGL through their olfactory pathway. Thus, we hypothesize that NAGL is a component of the sex pheromone and that it acts in conjunction with other yet unidentified components.


Assuntos
Acetilglucosamina/urina , Braquiúros/fisiologia , Atrativos Sexuais/urina , Animais , Biomarcadores/urina , Braquiúros/crescimento & desenvolvimento , Corte , Feminino , Masculino , Muda/fisiologia , Ressonância Magnética Nuclear Biomolecular
20.
Molecules ; 18(11): 13588-607, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24192912

RESUMO

A variety of cyanines provide versatile and sensitive agents acting as DNA stains and sensors and have been structurally modified to bind in the DNA minor groove in a sequence dependent manner. Similarly, we are developing a new set of cyanines that have been designed to achieve highly selective binding to DNA G-quadruplexes with much weaker binding to DNA duplexes. A systematic set of structurally analogous trimethine cyanines has been synthesized and evaluated for quadruplex targeting. The results reveal that elevated quadruplex binding and specificity are highly sensitive to the polymethine chain length, heterocyclic structure and intrinsic charge of the compound. Biophysical experiments show that the compounds display significant selectivity for quadruplex binding with a higher preference for parallel stranded quadruplexes, such as cMYC. NMR studies revealed the primary binding through an end-stacking mode and SPR studies showed the strongest compounds have primary KD values below 100 nM that are nearly 100-fold weaker for duplexes. The high selectivity of these newly designed trimethine cyanines for quadruplexes as well as their ability to discriminate between different quadruplexes are extremely promising features to develop them as novel probes for targeting quadruplexes in vivo.


Assuntos
Carbocianinas/química , Quadruplex G , Espectroscopia de Ressonância Magnética , Ressonância de Plasmônio de Superfície , Telômero/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...