Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 18(12): e1010765, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36574448

RESUMO

Gaussian spot fitting methods have significantly extended the spatial range where fluorescent microscopy can be used, with recent techniques approaching nanometre (nm) resolutions. However, small inter-fluorophore distances are systematically over-estimated for typical molecular scales. This bias can be corrected computationally, but current algorithms are limited to correcting distances between pairs of fluorophores. Here we present a flexible Bayesian computational approach that infers the distances and angles between multiple fluorophores and has several advantages over these previous methods. Specifically it improves confidence intervals for small lengths, estimates measurement errors of each fluorophore individually and infers the correlations between polygon lengths. The latter is essential for determining the full multi-fluorophore 3D architecture. We further developed the algorithm to infer the mixture composition of a heterogeneous population of multiple polygon states. We use our algorithm to analyse the 3D architecture of the human kinetochore, a macro-molecular complex that is essential for high fidelity chromosome segregation during cell division. Using triple fluorophore image data we unravel the mixture of kinetochore states during human mitosis, inferring the conformation of microtubule attached and unattached kinetochores and their proportions across mitosis. We demonstrate that the attachment conformation correlates with intersister tension and sister alignment to the metaphase plate.


Assuntos
Cinetocoros , Microtúbulos , Humanos , Teorema de Bayes , Mitose , Fuso Acromático
2.
STAR Protoc ; 2(4): 100774, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34841272

RESUMO

This protocol measures the 3D Euclidean distance (Δ3D) between two/three fluorescently labeled kinetochore components in fixed samples using Kinetochore Delta software (KiDv1.0.1, MATLAB based). Overestimation of mean Δ3D is corrected through a Bayesian algorithm, with ΔEC distances reflecting the ensemble average positions of fluorophores within a kinetochore population. This package also enables kinetochore categorization, which can be used to sub-sample kinetochores and measure ΔEC. Together, this allows the dynamic architecture of human kinetochores to be investigated (tested in hTERT-RPE1 cells). For complete details on the use and execution of this protocol, please refer to Roscioli et al. (2020).


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Espaço Intracelular/fisiologia , Microscopia de Fluorescência/métodos , Algoritmos , Células Cultivadas , Corantes Fluorescentes/química , Humanos , Cinetocoros/fisiologia , Software
3.
Cell Rep ; 31(4): 107535, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32348762

RESUMO

Kinetochores are multi-protein machines that form dynamic attachments to microtubules and control chromosome segregation. High fidelity is ensured because kinetochores can monitor attachment status and tension, using this information to activate checkpoints and error-correction mechanisms. To explore how kinetochores achieve this, we used two- and three-color subpixel fluorescence localization to define how proteins from six major complexes (CCAN, MIS12, NDC80, KNL1, RZZ, and SKA) and the checkpoint proteins Bub1, Mad1, and Mad2 are organized in the human kinetochore. This reveals how the outer kinetochore has a high nematic order and is largely invariant to the loss of attachment or tension, except for two mechanical sensors. First, Knl1 unravels to relay tension, and second, NDC80 undergoes jackknifing and loss of nematic order under microtubule detachment, with only the latter wired up to the checkpoint signaling system. This provides insight into how kinetochores integrate mechanical signals to promote error-free chromosome segregation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...