Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Med Genomics ; 8 Suppl 1: S6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25952014

RESUMO

BACKGROUND: Many pharmaceutical drugs are known to be ineffective or have negative side effects in a substantial proportion of patients. Genomic advances are revealing that some non-synonymous single nucleotide variants (nsSNVs) may cause differences in drug efficacy and side effects. Therefore, it is desirable to evaluate nsSNVs of interest in their ability to modulate the drug response. RESULTS: We found that the available data on the link between drug response and nsSNV is rather modest. There were only 31 distinct drug response-altering (DR-altering) and 43 distinct drug response-neutral (DR-neutral) nsSNVs in the whole Pharmacogenomics Knowledge Base (PharmGKB). However, even with this modest dataset, it was clear that existing bioinformatics tools have difficulties in correctly predicting the known DR-altering and DR-neutral nsSNVs. They exhibited an overall accuracy of less than 50%, which was not better than random diagnosis. We found that the underlying problem is the markedly different evolutionary properties between positions harboring nsSNVs linked to drug responses and those observed for inherited diseases. To solve this problem, we developed a new diagnosis method, Drug-EvoD, which was trained on the evolutionary properties of nsSNVs associated with drug responses in a sparse learning framework. Drug-EvoD achieves a TPR of 84% and a TNR of 53%, with a balanced accuracy of 69%, which improves upon other methods significantly. CONCLUSIONS: The new tool will enable researchers to computationally identify nsSNVs that may affect drug responses. However, much larger training and testing datasets are needed to develop more reliable and accurate tools.


Assuntos
Evolução Molecular , Farmacogenética/métodos , Polimorfismo de Nucleotídeo Único , Animais , Genoma Humano/genética , Humanos , Resultado do Tratamento
2.
Genome Res ; 22(8): 1383-94, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22665443

RESUMO

Many perspectives on the role of evolution in human health include nonempirical assumptions concerning the adaptive evolutionary origins of human diseases. Evolutionary analyses of the increasing wealth of clinical and population genomic data have begun to challenge these presumptions. In order to systematically evaluate such claims, the time has come to build a common framework for an empirical and intellectual unification of evolution and modern medicine. We review the emerging evidence and provide a supporting conceptual framework that establishes the classical neutral theory of molecular evolution (NTME) as the basis for evaluating disease- associated genomic variations in health and medicine. For over a decade, the NTME has already explained the origins and distribution of variants implicated in diseases and has illuminated the power of evolutionary thinking in genomic medicine. We suggest that a majority of disease variants in modern populations will have neutral evolutionary origins (previously neutral), with a relatively smaller fraction exhibiting adaptive evolutionary origins (previously adaptive). This pattern is expected to hold true for common as well as rare disease variants. Ultimately, a neutral evolutionary perspective will provide medicine with an informative and actionable framework that enables objective clinical assessment beyond convenient tendencies to invoke past adaptive events in human history as a root cause of human disease.


Assuntos
Evolução Molecular , Doenças Genéticas Inatas/genética , Variação Genética , Genoma Humano , Adaptação Biológica , Alelos , Frequência do Gene , Predisposição Genética para Doença , Genética Populacional , Humanos , Medicina Molecular/métodos , Seleção Genética
3.
Bioinformatics ; 27(23): 3319-20, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21994220

RESUMO

SUMMARY: Images containing spatial expression patterns illuminate the roles of different genes during embryogenesis. In order to generate initial clues to regulatory interactions, biologists frequently need to know the set of genes expressed at the same time at specific locations in a developing embryo, as well as related research publications. However, text-based mining of image annotations and research articles cannot produce all relevant results, because the primary data are images that exist as graphical objects. We have developed a unique knowledge base (FlyExpress) to facilitate visual mining of images from Drosophila melanogaster embryogenesis. By clicking on specific locations in pictures of fly embryos from different stages of development and different visual projections, users can produce a list of genes and publications instantly. In FlyExpress, each queryable embryo picture is a heat-map that captures the expression patterns of more than 4500 genes and more than 2600 published articles. In addition, one can view spatial patterns for particular genes over time as well as find other genes with similar expression patterns at a given developmental stage. Therefore, FlyExpress is a unique tool for mining spatiotemporal expression patterns in a format readily accessible to the scientific community. AVAILABILITY: http://www.flyexpress.net CONTACT: s.kumar@asu.edu.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Animais , Recursos Audiovisuais , Mineração de Dados , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Desenvolvimento Embrionário , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...