Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38002130

RESUMO

3,6,7-trimethyllumazine (Lepteridine™) is a newly discovered natural pteridine derivative unique to Manuka (Leptospermum scoparium) nectar and honey, with no previously reported biological activity. Pteridine derivative-based medicines, such as methotrexate, are used to treat auto-immune and inflammatory diseases, and Manuka honey reportedly possesses anti-inflammatory properties and is used topically as a wound dressing. MMP-9 is a potential candidate protein target as it is upregulated in recalcitrant wounds and intestinal inflammation. Using gelatin zymography, 40 µg/mL LepteridineTM inhibited the gelatinase activities of both pro- (22%, p < 0.0001) and activated (59%, p < 0.01) MMP-9 forms. By comparison, LepteridineTM exerted modest (~10%) inhibition against a chromogenic peptide substrate and no effect against a fluorogenic peptide substrate. These findings suggest that LepteridineTM may not interact within the catalytic domain of MMP-9 and exerts a negligible effect on the active site hydrolysis of small soluble peptide substrates. Instead, the findings implicate fibronectin II domain interactions by LepteridineTM which impair gelatinase activity, possibly through perturbed tethering of MMP-9 to the gelatin matrix. Molecular modelling analyses were equivocal over interactions at the S1' pocket versus the fibronectin II domain, while molecular dynamic calculations indicated rapid exchange kinetics. No significant degradation of synthetic or natural LepteridineTM in Manuka honey occurred during simulated gastrointestinal digestion. MMP-9 regulates skin and gastrointestinal inflammatory responses and extracellular matrix remodelling. These results potentially implicate LepteridineTM bioactivity in Manuka honey's reported beneficial effects on wound healing via topical application and anti-inflammatory actions in gastrointestinal disorder models via oral consumption.

2.
Food Chem X ; 19: 100800, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37780262

RESUMO

Formation of lysinoalanine protein-protein crosslinks during food processing adversely impacts nutritional value. However, mapping lysinoalanine directly in food is challenging. We characterized the fragmentation pattern of lysinoalanine crosslinks in synthetic peptide models over a range of pH and time treatments using mass spectrometry. A putative diagnostic ion resulting from the cleavage of the α-carbon and ß-carbon of lysinoalanine is identified in MALDI MS/MS spectra. This represents the first step in mapping lysinoalanine in real food samples with higher precision than currently identifiable through standard or customized software. We then determined a correlated trend in the reduction of disulfide bonds and formation of lysinoalanine with increasing pH and time. Mapping lysinoalanine formation is critical to enhance our understanding of molecular processes impacting the nutritional value of foods, including notably in the development of protein alternatives that use alkaline treatment to extract protein isolates.

3.
BBA Adv ; 3: 100086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37378356

RESUMO

Abstract: The self-assembling and gelation properties of a bioactive peptide derived from bovine casein (FFVAPFPEVFGK) were studied in the peptide's natural form (uncapped, uncapFFV) and capped with protecting groups added to both termini (capped, capFFV). Although the natural peptide (uncapFFV) did not demonstrate self-assembly, the capped peptide (capFFV) spontaneously self-assembled and formed a self-supporting gel. Variations in peptide concentration and incubation time influenced the gel's mechanical properties, suggesting the peptide's properties could be tuned and exploited for different applications. These results suggest that food-derived bioactive peptides have good potential for self-assembly and therefore utilisation as gels in functional foods and nutraceuticals. Background: Self-assembly is a natural phenomenon that occurs in many fundamental biological processes. Some peptides can self-assemble and form gels with tunable properties under given conditions. These properties, along with peptide bioactivity, can be combined to make unique biomaterials. Instead of synthesising the self-assembling bioactive peptides, we aim to extract them from natural sources. In order to use these peptides for different applications, it is essential to understand how we can trigger self-assembly and optimise the assembly conditions of these peptide gels. Scope: The self-assembling and gelation properties of a bioactive peptide derived from bovine casein (FFVAPFPEVFGK) were studied in the peptide's natural form (uncapped, uncapFFV) and capped with protecting groups added to both termini (capped, capFFV). Major conclusions: Although the natural peptide (uncapFFV) did not demonstrate self-assembly, the capped peptide (capFFV) spontaneously self-assembled and formed a self-supporting gel. Variations in peptide concentration and incubation time influenced the gel's mechanical properties, suggesting the peptide's properties could be tuned and exploited for different applications. General significance: These results suggest that food-derived bioactive peptides have good potential for self-assembly and therefore utilisation as gels in functional foods and nutraceuticals.

5.
Biochim Biophys Acta Gen Subj ; 1865(12): 130013, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34534644

RESUMO

BACKGROUND: Lipid hydroperoxides decompose to reactive aldehydes, such as acrolein. Measurement of oxidative stress markers in the clinic could improve risk stratification for patients. METHODS: To aid the development of diagnostic oxidative stress markers, we defined the acrolein modifications of haemoglobin using mass spectrometry. RESULTS: Acrolein modifications have little effect on the secondary structure of haemoglobin. They do not disrupt the quaternary structure, but instead promote crosslinked octamers. For acrolein modified haemoglobin the response to O2 binding is altered such that cooperativity is lost. Mass spectrometry experiments at a 1:1 acrolein:haemoglobin molar ratio demonstrate that the α-chain quickly forms an aza-Michael adduct (+56 Da), which then forms a more stable adduct, Nε-(3-methylpyridinium)lysine (MP-lysine, +76 Da) over 7 days. The ß-chain remains relatively unchanged over the duration of the 7 days and the aza-Michael adduct is dominant. At 2:1 and 5:1 molar ratios the α-chain was consistently modified at K7, H20, H50, and the ß-chain at C93 and H97 with the aza-Michael adduct. Beyond 5 h, an MP-adduct (+76 Da) was located predominantly at K7 of the α-chain, while an FDP-adduct (+94 Da) was observed at K95 of the ß-chain. CONCLUSIONS: We have generated qualitative evidence identifying the acrolein target sites on haemoglobin, a potential oxidative stress marker that is easily measured in circulation. GENERAL SIGNIFICANCE: We provide data for the community to develop targeted mass spectrometric or immunometric assays for acrolein modified haemoglobin to further validate the potential of haemoglobin as an oxidative stress marker in patients .


Assuntos
Acroleína , Aldeídos , Peroxidação de Lipídeos
6.
Nutrients ; 13(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206002

RESUMO

Celiac disease is activated by digestion-resistant gluten peptides that contain immunogenic epitopes. Sourdough fermentation is a potential strategy to reduce the concentration of these peptides within food. However, we currently know little about the effect of partial sourdough fermentation on immunogenic gluten. This study examined the effect of a single sourdough culture (representative of those that the public may consume) on the digestion of immunogenic gluten peptides. Sourdough bread was digested via the INFOGEST protocol. Throughout digestion, quantitative and discovery mass spectrometry were used to model the kinetic release profile of key immunogenic peptides and profile novel peptides, while ELISA probed the gluten's allergenicity. Macrostructural studies were also undertaken. Sourdough fermentation altered the protein structure, in vitro digestibility, and immunogenic peptide release profile. Interestingly, sourdough fermentation did not decrease the total immunogenic peptide concentration but altered the in vitro digestion profile of select immunogenic peptides. This work demonstrates that partial sourdough fermentation can alter immunogenic gluten digestion, and is the first study to examine the in vitro kinetic profile of immunogenic gluten peptides from sourdough bread.


Assuntos
Glutens/imunologia , Glutens/farmacologia , Peptídeos/metabolismo , Proteólise , Antígenos , Pão/análise , Doença Celíaca/dietoterapia , Digestão , Epitopos , Fermentação , Humanos , Triticum/química
7.
Curr Biol ; 31(10): R462, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34033762

RESUMO

Interview with Dame Juliet Gerrard, who studies the structure, function and application of proteins at the University of Auckland and is the Chief Science Advisor to the Prime Minister of New Zealand.


Assuntos
Proteínas , Nova Zelândia
8.
Food Chem ; 359: 129841, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940468

RESUMO

Modern high-speed mechanical dough development (MDD) alters the gluten macropolymer's (GMP) structure. Changes to both the protein and food matrix structure can influence protein digestibility and immunogenicity. This study investigated the relationship between protein structural changes imparted by MDD and gluten's digestibility plus celiac reactivity. Dough was prepared at three mixing speeds (63 rpm, 120 rpm and 200 rpm) to different degrees of development (between 10 and 180% wh.kg-1). Protein structural changes were characterised by confocal microscopy, free thiol determination and protein extractability assays. MDD altered the structure of gluten within bread, changing the protein's surface area and macrostructure. Breads were digested using the INFOGEST in vitro protocol. Gluten's antigenicity and digestibility were monitored using ELISA and mass spectrometry, by monitoring the concentration of six immunogenic peptides causative of celiac disease. The structural changes imparted by mixing did not affect bread's digestibility or celiac reactivity.


Assuntos
Pão/análise , Doença Celíaca/imunologia , Digestão , Glutens/química , Glutens/imunologia , Farinha/análise , Manipulação de Alimentos , Glutens/metabolismo , Fatores de Tempo
9.
Food Res Int ; 140: 109988, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33648223

RESUMO

Previous work has shown that baking induces structural changes within the gluten macropolymer (GMP) that reduce gluten protein digestibility. The precise nature of these structural changes within dough/bread, and how they alter the in vitro release profile of immunogenic gluten peptides that activate celiac disease is unknown. This work examined the effect of dough baking temperature and duration on the GMP's structure and the release profile of immunogenic gluten peptides. Dough was baked at either 150 °C or 230 °C for 25, 35 or 45 min. The structure of the GMP within the resulting loaves was defined and compared using confocal microscopy, quantitative protein network analysis, gliadin protein extractability (HPLC) and determination of the free thiol content. Both bread and dough were digested in vitro (INFOGEST) and the release profile of six immunogenic gluten peptides (including the immunodominant 33mer) defined using quantitative mass spectrometry. Higher baking temperatures and longer durations increased the degree of intermolecular disulfide bonds between the sulfur-rich gliadins and GMP backbone. The thermal load did not alter the GMP macrostructure, but significant differences between bread and dough were observed. Baking altered the concentration and release profile of the immunogenic gluten peptides throughout in vitro digestion causing the digestion of immunogenic gluten peptides differed between raw and heat-treated bread.


Assuntos
Pão , Glutens , Pão/análise , Gliadina , Peptídeos , Temperatura
10.
Food Chem ; 340: 127903, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32889205

RESUMO

Microbial transglutaminase (mTG) catalyses the formation of protein crosslinks, deamidating glutamine in a side-reaction. Gluten deamidation by human tissue transglutaminase is critical to activate celiac disease pathogenesis making the addition of mTG to wheat-based products controversial. The ability of mTG (0-2000 U.kg-1) to alter gluten's structure, digestibility and the deamidation state of six immunogenic gluten peptides within bread was investigated. Gluten's structure was altered when mTG exceeded 100 U.kg-1, determined by confocal microscopy, extractability and free sulfhydryl assays. The effect of mTG on six immunogenic peptides was investigated by in vitro digestion (INFOGEST) and mass spectrometry. The addition of mTG to bread (0-2000 U.kg-1) did not alter the deamidation state or digestibility of the immunogenic peptides investigated. Overall, this investigation indicated that the addition of mTG to bread does not create activated gluten peptides. This analysis provides evidence for risk assessments of mTG as a food processing aid.


Assuntos
Pão , Glutens/química , Glutens/farmacocinética , Transglutaminases/metabolismo , Pão/análise , Doença Celíaca , Digestão , Glutens/imunologia , Humanos , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/imunologia , Proteólise , Streptomyces/enzimologia , Transglutaminases/química , Triticum/química
11.
Food Funct ; 11(11): 9468-9488, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33155590

RESUMO

Peptides are known for their diverse bioactivities including antioxidant, antimicrobial, and anticancer activity, all three of which are potentially useful in treating colon-associated diseases. Beside their capability to stimulate positive health effects once released in the body, peptides are able to form useful nanostructures such as hydrogels. Combining peptide bioactivity and peptide gel-forming potentials can create interesting systems that can be used for oral delivery. This combination, acting as a two-in-one system, has the potential to avoid the need for delicate entrapment of a drug or natural bioactive compound. We here review the context and research progress, to date, in this area.


Assuntos
Peptídeos/administração & dosagem , Administração Oral , Doenças do Colo/tratamento farmacológico , Composição de Medicamentos , Humanos , Hidrogéis , Peptídeos/química , Peptídeos/uso terapêutico
12.
ACS Omega ; 5(41): 26365-26373, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33110964

RESUMO

The co-assembly of peptides and proteins in poly(styrene-block-ethylene oxide) (PS-b-PEO) thin films has proven to be a promising method to fabricate polymer-biomolecule functional materials. Contrary to the covalent immobilization of biomolecules on surfaces, co-assembly presents the opportunity to arrange cargo within thin films, which can be released upon exposure to an aqueous environment. The use of a mixed solvent system ensures the solubilization of hydrophobic polymer as well as the solubilization and protection of the biomolecule cargo. However, to produce largely defect-free films of PS-b-PEO from a solvent mixture containing water is challenging due to the narrow range of solvent miscibility and polymer/protein solubility. This work explores the limits of using a benzene/methanol/water solvent mixture for the production of thin PS-b-PEO films and provides a template for the fabrication optimization of block copolymer thin films in different complex solvent systems. The film quality is analyzed using optical microscopy and atomic force microscopy and correlated to the solvent composition. By adjusting the solvent composition to 80/18.8/1.2 vol % benzene/methanol/water, it was possible to reliably fabricate thin films with less than 1% macroscopic defect surface coverage. Using the optimized solvent composition, we also demonstrate the fabrication of ordered PS-b-PEO films containing lysozyme. Furthermore, we show the release of lysozyme into aqueous media, which highlights the potential use of such films for drug delivery applications.

13.
MethodsX ; 7: 101076, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33033691

RESUMO

Mass spectrometry (MS) is an emerging method to determine the accurate concentration of immunogenic gluten peptides. It is of interest to quantify specific peptides within the gluten peptidome due to the role they play in the activation of the celiac immune cascade. Celiac disease is an autoimmune disorder triggered in genetically susceptible individuals by the presence of specific gluten peptides that resist digestion in the gastrointestinal tract. The protocol detailed within this paper can accurately quantify (label-free) the concentration of six immunogenic gluten peptides (including the 33mer) released from a food matrix using the INFOGEST in vitro digestion protocol. This method can be used to monitor small changes in the concentration of these marker peptides in response to exogenous factors such as plant-breeding, fermentation or food processing.

14.
Food Chem ; 333: 127466, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32659668

RESUMO

Celiac disease is an autoimmune illness activated by gluten peptides produced during gastrointestinal digestion. A simulated in vitro digestion of gluten was conducted to define the profile and kinetic release pattern of immunogenic gluten peptides in a physiologically relevant food matrix. White bread was digested using the INFOGEST in vitro standardised digestion protocol from 0 to 240 min and subsequently analysed by SDS-PAGE, quantitative LC-MS/MS, untargeted LC-MS/MS and ELISA. The release profile of six gluten peptides was defined by quantitative LC-MS/MS; none were detected in the gastric phase, but rapidly peaked in the intestinal phase. These results were corroborated by the ELISA analysis. Untargeted proteomics identified 83 immunogenic peptides. Their qualitative concentrations were defined throughout digestion, demonstrating complex relationships through proteolysis. This analysis suggests immunogenic gluten may peak within the intestinal duodenum and gives new insights into the complexity of gluten digestion from a physiologically relevant food matrix.


Assuntos
Pão/análise , Doença Celíaca/imunologia , Glutens/metabolismo , Peptídeos/análise , Proteômica , Cromatografia Líquida , Digestão , Glutens/análise , Glutens/imunologia , Humanos , Espectrometria de Massas em Tandem , Triticum/química
15.
Soft Matter ; 16(28): 6563-6571, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32588868

RESUMO

Increased water solubility and long-range intermolecular ordering have been introduced into the fluorescent organic molecule thiophene-diketopyrrolopyrrole (TDPP) via its conjugation to the octapeptide HEFISTAH, which is derived from the protein-protein ß-interface of the homo-tetramer protein diaminopimelate decarboxylase. The octapeptide, and its TDPP mono- and cross-linked conjugates were synthesised using 9-fluorenylmethoxycarbonyl (Fmoc) based solid-phase peptide synthesis (SPPS). Unlike the unmodified peptide, the resulting mono-linked and cross-linked peptides showed a fibrous morphology and formed hydrogels at 4 wt% in water at neutral pH, but failed to assemble at pH 2 and pH 9. Further peptide characterization showed that the TDPP organic core enhances peptide self-assembly and that both peptides assembled into fibers with a parallel ß-sheet structure. Furthermore, UV-vis spectroscopic analysis suggests that the TDPP molecules form H-type aggregates where the chromophores are likely to be co-facially packed, but rotationally and/or laterally offset from one another. This intermolecular coupling indicates that π-π stacking interactions are highly likely - a favourable sign for charge transport. The enhanced aqueous solubility and self-assembling properties of the TDPP-peptide conjugates allowed the successful preparation of thin films. Atomic force microscopy, X-ray diffraction and UV-vis spectroscopic analysis of these thin films revealed that the hybrid materials retained a fibrous morphology, ß-sheet structures and strong intermolecular coupling between neighbouring TDPP molecules. These results open an exciting avenue for bio-organic materials development, through structural and electronic tuning of the TDPP core.


Assuntos
Peptídeos , Pirróis , Hidrogéis , Concentração de Íons de Hidrogênio , Cetonas
16.
Food Chem ; 319: 126598, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32182540

RESUMO

Collagens are large structural proteins that are prevalent in mammalian connective tissue. Peptides designed to include a glycine-proline-hydroxyproline (GPO) amino acid triad are biomimetic analogs of the collagen triple helix, a fold that is a hallmark of collagen-like sequences. To inform the rational engineering of collagen-like peptides and proteins for food systems, we report the crystal structure of the (GPO)10 peptide at 0.89-Å resolution, solved using direct methods. We determined that a single chain in the asymmetric unit forms a pseudo-hexagonal network of triple helices that have a pitch variation consistent with the model 7/2 helix (3.5 residues per turn). The proline rings occupied one of two states, while the helix was found to have a well-defined hydration shell involved in the stabilization of the inter-helix crystal network. This structure offers a new high-resolution basis for understanding the hierarchical assembly of native collagens, which will aid the food industry in engineering new sustainable food systems.


Assuntos
Colágeno/química , Prolina/química , Cristalografia por Raios X , Glicina , Hidroxiprolina/química , Modelos Moleculares , Fragmentos de Peptídeos/química , Conformação Proteica
17.
Methods Mol Biol ; 2073: 1-13, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31612433

RESUMO

Protein nanotechnology research is at the intersection of protein biology and nanotechnology. Protein molecules are repurposed as nanostructures and nanoscaffolds, and nanoscale tools are used to investigate protein assembly and function. In this chapter, a select review is given of some of the recent examples of protein nanostructures, covering both those directly borrowed from biology and those designed for use in nanotechnology. It updates the introductory chapter to Edition 2 of this volume to reflect significant progress in this field. Some strategies to incorporate protein structures into devices are also covered, with the successes and challenges of this interdisciplinary field identified. This provides an overarching framework for the rest of the volume, which details the case studies of some of the protein building blocks that have been designed and produced, along with tips and tools for their incorporation into devices and making functional measurements.


Assuntos
Nanotecnologia/métodos , Proteínas/química , Animais , Humanos
18.
Protein Sci ; 29(1): 157-168, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31622516

RESUMO

A key learning outcome for undergraduate biochemistry classes is a thorough understanding of the principles of protein structure. Traditional approaches to teaching this material, which include two-dimensional (2D) images on paper, physical molecular modeling kits, and projections of 3D structures into 2D, are unable to fully capture the dynamic 3D nature of proteins. We have built a virtual reality application, Peppy, aimed at facilitating teaching of the principles of protein secondary structure. Rather than attempt to model molecules with the same fidelity to the underlying physical chemistry as existing, research-oriented molecular modelling approaches, we took the more straightforward approach of harnessing the Unity video game physics engine. Indeed, the simplicity and limitations of our model are strengths in a teaching context, provoking questions and thus deeper understanding. Peppy allows exploration of the relative effects of hydrogen bonding (and electrostatic interactions more generally), backbone φ/ψ angles, basic chemical structure, and steric effects on a polypeptide structure in an accessible format that is novel, dynamic, and fun to use. Apart from describing the implementation and use of Peppy, we discuss the outcomes of deploying Peppy in undergraduate biochemistry courses.


Assuntos
Bioquímica/educação , Peptídeos/química , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Secundária de Proteína , Interface Usuário-Computador , Jogos de Vídeo , Realidade Virtual
19.
Biochem Biophys Res Commun ; 512(2): 263-268, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30885432

RESUMO

Oligomeric proteins are abundant in nature and are useful for a range of nanotechnological applications; however, a key requirement in using these proteins is controlling when and how they form oligomeric assemblies. Often, protein oligomerisation is triggered by various cellular signals, allowing for controllable oligomerisation. An example of this is human peroxiredoxin 3 (Prx), a stable protein that natively forms dimers, dodecameric rings, stacks, and tubes in response to a range of environmental stimuli. Although we know the key environmental stimuli for switching between different oligomeric states of Prx, we still have limited molecular knowledge and control over the formation and size of the protein's stacks and tubes. Here, we have generated a range of Prx mutants with either a decreased or knocked out ability to stack, and used both imaging and solution studies to show that Prx stacks through electrostatic interactions that are stabilised by a hydrogen bonding network. Furthermore, we show that altering the length of the polyhistidine tag will alter the length of the Prx stacks, with longer polyhistidine tags giving longer stacks. Finally, we have analysed the effect a variety of heavy metals have on the oligomeric state of Prx, wherein small transition metals like nickel enhances Prx stacking, while larger positively charged metals like tungstate ions can prevent Prx stacking. This work provides further structural characterisation of Prx, to enhance its use as a platform from which to build protein nanostructures for a variety of applications.


Assuntos
Peroxirredoxina III/química , Multimerização Proteica , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida , Níquel/química , Peroxirredoxina III/genética , Peroxirredoxina III/ultraestrutura , Ácido Fosfotúngstico/química , Mutação Puntual , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Eletricidade Estática
20.
Chem Sci ; 9(28): 6099-6106, 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30090298

RESUMO

The peroxiredoxins are a well characterised family of toroidal proteins which can self-assemble into a striking array of quaternary structures, including protein nanotubes, making them attractive as building blocks for nanotechnology. Tools to characterise these assemblies are currently scarce. Here, assemblies of peroxiredoxin proteins were examined using native mass spectrometry and complementary solution techniques. We demonstrated unequivocally that tube formation is fully reversible, a useful feature in a molecular switch. Simple assembly of individual toroids was shown to be tunable by pH and the presence of a histidine tag. Collision induced dissociation experiments on peroxiredoxin rings revealed a highly unusual symmetrical disassembly pathway, consistent with the structure disassembling as a hexamer of dimers. This study provides the foundation for the rational design and precise characterisation of peroxiredoxin protein structures where self-assembly can be harnessed as a key feature for applications in nanotechnology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...