Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 328: 60-69, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28529118

RESUMO

Early life is a critical period for the progressive establishment of immunity in response to environmental stimuli; the impact of airborne challenges on this process is not well defined. In a longitudinal fashion, we determined the effect of episodic house dust mite (HDM) aerosol and ozone inhalation, both separately and combined, on peripheral blood immune cell phenotypes and cytokine expression from 4 to 25weeks of age in an infant rhesus monkey model of childhood development. Immune profiles in peripheral blood were compared with lung lavage at 25weeks of age. Independent of exposure, peripheral blood cell counts fluctuated with chronologic age of animals, while IFNγ and IL-4 mRNA levels increased over time in a linear fashion. At 12weeks of age, total WBC, lymphocyte numbers, FoxP3 mRNA and IL-12 mRNA were dramatically reduced relative to earlier time points, but increased to a steady state with age. Exposure effects were observed for monocyte numbers, as well as CCR3, FoxP3, and IL-12 mRNA levels in peripheral blood. Significant differences in cell surface marker and cytokine expression were detected following in vitro HDM or PMA/ionomycin stimulation of PBMC isolated from animals exposed to either HDM or ozone. Lavage revealed a mixed immune phenotype of FoxP3, IFNγ and eosinophilia in association with combined HDM plus ozone exposure, which was not observed in blood. Collectively, our findings show that airborne challenges during postnatal development elicit measureable cell and cytokine changes in peripheral blood over time, but exposure-induced immune profiles are not mirrored in the lung.


Assuntos
Poluentes Atmosféricos/toxicidade , Alérgenos/toxicidade , Sangue/imunologia , Aerossóis , Envelhecimento/imunologia , Animais , Antígenos de Dermatophagoides , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Exposição por Inalação , Interferon gama/análise , Macaca mulatta , Masculino , Monócitos/metabolismo
2.
Am J Respir Cell Mol Biol ; 56(5): 657-666, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28208028

RESUMO

The long-term health effects of wildfire smoke exposure in pediatric populations are not known. The objectives of this study were to determine if early life exposure to wildfire smoke can affect parameters of immunity and airway physiology that are detectable with maturity. We studied a mixed-sex cohort of rhesus macaque monkeys that were exposed as infants to ambient wood smoke from a series of Northern California wildfires in the summer of 2008. Peripheral blood mononuclear cells (PBMCs) and pulmonary function measures were obtained when animals were approximately 3 years of age. PBMCs were cultured with either LPS or flagellin, followed by measurement of secreted IL-8 and IL-6 protein. PBMCs from a subset of female animals were also evaluated by Toll-like receptor (TLR) pathway mRNA analysis. Induction of IL-8 protein synthesis with either LPS or flagellin was significantly reduced in PBMC cultures from wildfire smoke-exposed female monkeys. In contrast, LPS- or flagellin-induced IL-6 protein synthesis was significantly reduced in PBMC cultures from wildfire smoke-exposed male monkeys. Baseline and TLR ligand-induced expression of the transcription factor, RelB, was globally modulated in PBMCs from wildfire smoke-exposed monkeys, with additional TLR pathway genes affected in a ligand-dependent manner. Wildfire smoke-exposed monkeys displayed significantly reduced inspiratory capacity, residual volume, vital capacity, functional residual capacity, and total lung capacity per unit of body weight relative to control animals. Our findings suggest that ambient wildfire smoke exposure during infancy results in sex-dependent attenuation of systemic TLR responses and reduced lung volume in adolescence.


Assuntos
Envelhecimento/fisiologia , Exposição Ambiental , Incêndios , Pulmão/imunologia , Pulmão/fisiopatologia , Fumaça , Poluição do Ar/análise , Animais , Peso Corporal , California , Feminino , Leucócitos Mononucleares/metabolismo , Ligantes , Modelos Lineares , Macaca mulatta , Masculino , NF-kappa B/metabolismo , Tamanho da Partícula , Material Particulado/análise , Testes de Função Respiratória , Receptores Toll-Like/metabolismo
3.
Am J Respir Cell Mol Biol ; 53(6): 761-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26309027

RESUMO

Respiratory tract infections are a leading cause of morbidity and mortality in children under 5 years of age. Increased susceptibility to infection is associated with deficiencies in immunity during early childhood. Airway epithelium represents the first line of mucosal defense against inhaled pathogens. However, little is known about epithelial immune mechanisms in the maturing lung. IL-22 and its receptor IL-22R1 are important in host defense and repair of epithelial barriers. The objective of this study was to determine whether a quantitative difference in IL-22R1 exists between infant and adult airways using the rhesus macaque monkey as a model of childhood lung development. Immunofluorescence staining of tracheal tissue revealed minimal expression of IL-22R1 in epithelium at 1 month of age, with a progressive increase in fluorescence-positive basal cells through 1 year of age. Western blot analysis of tracheal lysates confirmed significant age-dependent differences in IL-22R1 protein content. Further, primary tracheobronchial epithelial cell cultures established from infant and adult monkeys showed differential IL-22R1 mRNA and protein expression in vitro. To begin to assess the regulation of age-dependent IL-22R1 expression in airway epithelium, the effect of histone deacetylase and DNA methyltransferase inhibitors was evaluated. IL-22R1 mRNA in adult cultures was not altered by 5-aza-2'-deoxycytidine or trichostatin A. IL-22R1 mRNA in infant cultures showed no change with 5-aza-2'-deoxycytidine but was significantly increased after trichostatin A treatment; however, IL-22R1 protein did not increase concurrently. These data suggest that IL-22R1 in airway epithelium is regulated, in part, by epigenetic mechanisms that are dependent on chronologic age.


Assuntos
Pulmão/metabolismo , Receptores de Interleucina/metabolismo , Animais , Células Cultivadas , Epigênese Genética , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/crescimento & desenvolvimento , Macaca mulatta , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Interleucina/genética , Receptores de Interleucina-10/genética , Receptores de Interleucina-10/metabolismo , Mucosa Respiratória/metabolismo
4.
J Virol ; 88(13): 7412-25, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24741104

RESUMO

UNLABELLED: Influenza is the cause of significant morbidity and mortality in pediatric populations. The contribution of pulmonary host defense mechanisms to viral respiratory infection susceptibility in very young children is poorly understood. As a surrogate to compare mucosal immune responses of infant and adult lungs, rhesus monkey primary airway epithelial cell cultures were infected with pandemic influenza A/H1N1 virus in vitro. Virus replication, cytokine secretion, cell viability, and type I interferon (IFN) pathway PCR array profiles were evaluated for both infant and adult cultures. In comparison with adult cultures, infant cultures showed significantly increased levels of H1N1 replication, reduced alpha interferon (IFN-α) protein synthesis, and no difference in cell death following infection. Age-dependent differences in expression levels of multiple genes associated with the type I IFN pathway were observed in H1N1-infected cultures. To investigate the pulmonary and systemic responses to H1N1 infection in early life, infant monkeys were inoculated with H1N1 by upper airway administration. Animals were monitored for virus and parameters of inflammation over a 14-day period. High H1N1 titers were recovered from airways at day 1, with viral RNA remaining detectable until day 9 postinfection. Despite viral clearance, bronchiolitis and alveolitis persisted at day 14 postinfection; histopathological analysis revealed alveolar septal thickening and intermittent type II pneumocyte hyperplasia. Our overall findings are consistent with the known susceptibility of pediatric populations to respiratory virus infection and suggest that intrinsic developmental differences in airway epithelial cell immune function may contribute to the limited efficacy of host defense during early childhood. IMPORTANCE: To the best of our knowledge, this study represents the first report of intrinsic developmental differences in infant airway epithelial cells that may contribute to the increased susceptibility of the host to respiratory virus infections. Despite the global burden of influenza, there are currently no vaccine formulations approved for children <6 months of age. Given the challenges of conducting experimental studies involving pediatric patients, rhesus monkeys are an ideal laboratory animal model to investigate the maturation of pulmonary mucosal immune mechanisms during early life because they are most similar to those of humans with regard to postnatal maturation of the lung structure and the immune system. Thus, our findings are highly relevant to translational medicine, and these data may ultimately lead to novel approaches that enhance airway immunity in very young children.


Assuntos
Epitélio/imunologia , Imunidade Inata/imunologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Pulmão/imunologia , Infecções por Orthomyxoviridae/imunologia , Sistema Respiratório/imunologia , Replicação Viral/fisiologia , Animais , Animais Recém-Nascidos , Western Blotting , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Técnicas Imunoenzimáticas , Inflamação/imunologia , Inflamação/virologia , Interferons/genética , Macaca mulatta , Infecções por Orthomyxoviridae/virologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
PLoS One ; 9(3): e90401, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24594710

RESUMO

Exposure to ozone has been associated with increased incidence of respiratory morbidity in humans; however the mechanism(s) behind the enhancement of susceptibility are unclear. We have previously reported that exposure to episodic ozone during postnatal development results in an attenuated peripheral blood cytokine response to lipopolysaccharide (LPS) that persists with maturity. As the lung is closely interfaced with the external environment, we hypothesized that the conducting airway epithelium of neonates may also be a target of immunomodulation by ozone. To test this hypothesis, we evaluated primary airway epithelial cell cultures derived from juvenile rhesus macaque monkeys with a prior history of episodic postnatal ozone exposure. Innate immune function was measured by expression of the proinflammatory cytokines IL-6 and IL-8 in primary cultures established following in vivo LPS challenge or, in response to in vitro LPS treatment. Postnatal ozone exposure resulted in significantly attenuated IL-6 mRNA and protein expression in primary cultures from juvenile animals; IL-8 mRNA was also significantly reduced. The effect of antecedent ozone exposure was modulated by in vivo LPS challenge, as primary cultures exhibited enhanced cytokine expression upon secondary in vitro LPS treatment. Assessment of potential IL-6-targeting microRNAs miR-149, miR-202, and miR-410 showed differential expression in primary cultures based upon animal exposure history. Functional assays revealed that miR-149 is capable of binding to the IL-6 3' UTR and decreasing IL-6 protein synthesis in airway epithelial cell lines. Cumulatively, our findings suggest that episodic ozone during early life contributes to the molecular programming of airway epithelium, such that memory from prior exposures is retained in the form of a dysregulated IL-6 and IL-8 response to LPS; differentially expressed microRNAs such as miR-149 may play a role in the persistent modulation of the epithelial innate immune response towards microbes in the mature lung.


Assuntos
Epitélio/imunologia , Imunidade Inata/genética , Pulmão/imunologia , Macaca mulatta/imunologia , MicroRNAs/genética , Ozônio/farmacologia , Regiões 3' não Traduzidas/genética , Animais , Animais Recém-Nascidos , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio/efeitos dos fármacos , Imunofluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade Inata/efeitos dos fármacos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Lipopolissacarídeos/farmacologia , Macaca mulatta/genética , Masculino , MicroRNAs/metabolismo , Ligação Proteica/efeitos dos fármacos
6.
Toxicol Appl Pharmacol ; 257(3): 309-18, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21945493

RESUMO

Epidemiology supports a causal link between air pollutant exposure and childhood asthma, but the mechanisms are unknown. We have previously reported that ozone exposure can alter the anatomic distribution of CD25+ lymphocytes in airways of allergen-sensitized infant rhesus monkeys. Here, we hypothesized that ozone may also affect eosinophil trafficking to allergen-sensitized infant airways. To test this hypothesis, we measured blood, lavage, and airway mucosa eosinophils in 3-month old monkeys following cyclical ozone and house dust mite (HDM) aerosol exposures. We also determined if eotaxin family members (CCL11, CCL24, CCL26) are associated with eosinophil location in response to exposures. In lavage, eosinophil numbers increased in animals exposed to ozone and/or HDM. Ozone+HDM animals showed significantly increased CCL24 and CCL26 protein in lavage, but the concentration of CCL11, CCL24, and CCL26 was independent of eosinophil number for all exposure groups. In airway mucosa, eosinophils increased with exposure to HDM alone; comparatively, ozone and ozone+HDM resulted in reduced eosinophils. CCL26 mRNA and immunofluorescence staining increased in airway mucosa of HDM alone animals and correlated with eosinophil volume. In ozone+HDM animal groups, CCL24 mRNA and immunofluorescence increased along with CCR3 mRNA, but did not correlate with airway mucosa eosinophils. Cumulatively, our data indicate that ozone exposure results in a profile of airway eosinophil migration that is distinct from HDM mediated pathways. CCL24 was found to be induced only by combined ozone and HDM exposure, however expression was not associated with the presence of eosinophils within the airway mucosa.


Assuntos
Quimiocina CCL24/metabolismo , Eosinófilos/metabolismo , Ozônio/toxicidade , Mucosa Respiratória/metabolismo , Alérgenos/imunologia , Animais , Animais Recém-Nascidos , Quimiocina CCL24/imunologia , Eosinófilos/imunologia , Imunofluorescência , Macaca mulatta , Masculino , Ozônio/imunologia , Pyroglyphidae/imunologia , RNA Mensageiro/metabolismo , Mucosa Respiratória/imunologia
7.
Toxicol Appl Pharmacol ; 236(1): 39-48, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19371618

RESUMO

The epidemiologic link between air pollutant exposure and asthma has been supported by experimental findings, but the mechanisms are not understood. In this study, we evaluated the impact of combined ozone and house dust mite (HDM) exposure on the immunophenotype of peripheral blood and airway lymphocytes from rhesus macaque monkeys during the postnatal period of development. Starting at 30 days of age, monkeys were exposed to 11 cycles of filtered air, ozone, HDM aerosol, or ozone+HDM aerosol. Each cycle consisted of ozone delivered at 0.5 ppm for 5 days (8 h/day), followed by 9 days of filtered air; animals received HDM aerosol during the last 3 days of each ozone exposure period. Between 2-3 months of age, animals co-exposed to ozone+HDM exhibited a decline in total circulating leukocyte numbers and increased total circulating lymphocyte frequency. At 3 months of age, blood CD4+/CD25+ lymphocytes were increased with ozone+HDM. At 6 months of age, CD4+/CD25+ and CD8+/CD25+ lymphocyte populations increased in both blood and lavage of ozone+HDM animals. Overall volume of CD25+ cells within airway mucosa increased with HDM exposure. Ozone did not have an additive effect on volume of mucosal CD25+ cells in HDM-exposed animals, but did alter the anatomical distribution of this cell type throughout the proximal and distal airways. We conclude that a window of postnatal development is sensitive to air pollutant and allergen exposure, resulting in immunomodulation of peripheral blood and airway lymphocyte frequency and trafficking.


Assuntos
Poluentes Atmosféricos/imunologia , Antígenos de Dermatophagoides/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Pulmão/imunologia , Ozônio/imunologia , Mucosa Respiratória/imunologia , Aerossóis , Fatores Etários , Animais , Animais Recém-Nascidos , Líquido da Lavagem Broncoalveolar/imunologia , Quimiotaxia de Leucócito , Imunofenotipagem , Exposição por Inalação , Macaca mulatta , Masculino
8.
Toxicol Appl Pharmacol ; 191(1): 74-85, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12915105

RESUMO

Twenty-four infant rhesus monkeys (30 days old) were exposed to 11 episodes of filtered air (FA), house dust mite allergen aerosol (HDMA), ozone (O3), or HDMA + O3 (5 days each followed by 9 days of FA). Ozone was delivered for 8 h/day at 0.5 ppm. Twelve of the monkeys were sensitized to house dust mite allergen (Dermatophagoides farinae) at ages 14 and 28 days by subcutaneous inoculation (SQ) of HDMA in alum and intraperitoneal injection of heat-killed Bordetella pertussis cells. Sensitized monkeys were exposed to HDMA aerosol for 2 h/day on days 3-5 of either FA (n = 6) or O3 (n = 6) exposure. Nonsensitized monkeys were exposed to either FA (n = 6) or O3 (n = 6). During the exposure regimen, parameters of allergy (i.e., serum IgE, histamine, and eosinophilia), airways resistance, reactivity, and structural remodeling were evaluated. Eleven repeated 5-day cycles of inhaling 0.5 ppm ozone over a 6-month period had only mild effects on the airways of nonsensitized infant rhesus monkeys. Similarly, the repeated inhalation of HDMA by HDMA-sensitized infant monkeys resulted in only mild airway effects, with the exception of a marked increase in proximal airway and terminal bronchiole content of eosinophils. In contrast, the combined cyclic inhalation of ozone and HDMA by HDMA sensitized infants monkeys resulted in a marked increase in serum IgE, serum histamine, and airways eosinophilia. Furthermore, combined cyclic inhalation of ozone and HDMA resulted in even greater alterations in airway structure and content that were associated with a significant elevation in baseline airways resistance and reactivity. These results suggest that ozone can amplify the allergic and structural remodeling effects of HDMA sensitization and inhalation.


Assuntos
Alérgenos/toxicidade , Oxidantes Fotoquímicos/toxicidade , Ozônio/toxicidade , Hipersensibilidade Respiratória/patologia , Administração por Inalação , Aerossóis , Animais , Membrana Basal/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Sinergismo Farmacológico , Eosinófilos/imunologia , Histamina/sangue , Hipersensibilidade Imediata/induzido quimicamente , Hipersensibilidade Imediata/patologia , Imunoglobulina E/imunologia , Macaca mulatta , Ácaros/imunologia , Oxidantes Fotoquímicos/administração & dosagem , Ozônio/administração & dosagem , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/imunologia , Mecânica Respiratória/efeitos dos fármacos , Testes Cutâneos , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...