Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1296: 342347, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401937

RESUMO

Correct identification and quantification of different sterol biomarkers can be used as a first-line diagnostic approach for inherited metabolic disorders (IMD). The main drawbacks of current methodologies are related to lack of selectivity and sensitivity for some of these compounds. To address this, we developed and validated two sensitive and selective assays for quantification of six cholesterol biosynthesis pathway intermediates (total amount (free and esterified form) of 7-dehydrocholesterol (7-DHC), 8-dehydrocholesterol (8-DHC), desmosterol, lathosterol, lanosterol and cholestanol), two phytosterols (total amount (free and esterified form) of campesterol and sitosterol) and free form of two oxysterols (7-ketocholesterol (7-KC) and 3ß,5α,6ß-cholestane-triol (C-triol). For quantification of four cholesterol intermediates we based our analytical approach on sterol derivatization with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD). Quantification of all analytes is performed using UPLC coupled to an Orbitrap high resolution mass spectrometry (HRMS) system, with detection of target ions through full scan acquisition using positive atmospheric pressure chemical ionization (APCI) mode. UPLC and MS parameters were optimized to achieve high sensitivity and selectivity. Analog stable isotope labeled for each compound was used for proper quantification and correction for recovery, matrix effects and process efficiency. Precision (2.4%-12.3% inter-assay variation), lower limit of quantification (0.027 nM-50.5 nM) and linearity (5.5 µM (R2 0.999) - 72.3 µM (R2 0.997)) for phyto- and oxysterols were determined. The diagnostic potential of these two assays in a cohort of patients (n = 31, 50 samples) diagnosed with IMD affecting cholesterol and lysosomal/peroxisomal homeostasis is demonstrated.


Assuntos
Oxisteróis , Fitosteróis , Humanos , Esteróis/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas
2.
Metabolites ; 13(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38132878

RESUMO

NAD synthetase 1 (encoded by the gene NADSYN1) is a cytosolic enzyme that catalyzes the final step in the biosynthesis of nicotinamide adenine dinucleotide (NAD+) from tryptophan and nicotinic acid. NADSYN1 deficiency has recently been added to the spectrum of congenital NAD+ deficiency disorders. To gain insight into the metabolic consequences of NADSYN1 deficiency, the encoding gene was disrupted in A549 and HEK293T cells, and the metabolome was profiled in the presence of different NAD+ precursors, including tryptophan, nicotinamide and nicotinic acid. We demonstrate that when precursors of the NAD+ salvage pathway in the form of nicotinamide become limiting, NADSYN1 deficiency results in a decline in intracellular NAD+ levels even in the presence of other potential NAD+ sources such as tryptophan and nicotinic acid. As a consequence, alterations in 122 and 69 metabolites are observed in NADSYN1-deficient A549 and HEK293T cells compared to the wild-type cell line (FC > 2 and p < 0.05). We thus show that NADSYN1 deficiency results in a metabolic phenotype characterized by alterations in glycolysis, the TCA cycle, the pentose phosphate pathway, and the polyol pathway.

3.
Cell Rep ; 42(9): 113043, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37647199

RESUMO

The malate-aspartate shuttle (MAS) is a redox shuttle that transports reducing equivalents across the inner mitochondrial membrane while recycling cytosolic NADH to NAD+. We genetically disrupted each MAS component to generate a panel of MAS-deficient HEK293 cell lines in which we performed [U-13C]-glucose tracing. MAS-deficient cells have reduced serine biosynthesis, which strongly correlates with the lactate M+3/pyruvate M+3 ratio (reflective of the cytosolic NAD+/NADH ratio), consistent with the NAD+ dependency of phosphoglycerate dehydrogenase in the serine synthesis pathway. Among the MAS-deficient cells, those lacking malate dehydrogenase 1 (MDH1) show the most severe metabolic disruptions, whereas oxoglutarate-malate carrier (OGC)- and MDH2-deficient cells are less affected. Increasing the NAD+-regenerating capacity using pyruvate supplementation resolves most of the metabolic disturbances. Overall, we show that the MAS is important for de novo serine biosynthesis, implying that serine supplementation could be used as a therapeutic strategy for MAS defects and possibly other redox disorders.


Assuntos
Ácido Aspártico , Malatos , Humanos , Ácido Aspártico/metabolismo , Malatos/metabolismo , NAD/metabolismo , Células HEK293 , Oxirredução , Piruvatos
4.
J Biol Chem ; 299(9): 105047, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451483

RESUMO

Recently, biallelic variants in PLPBP coding for pyridoxal 5'-phosphate homeostasis protein (PLPHP) were identified as a novel cause of early-onset vitamin B6-dependent epilepsy. The molecular function and precise role of PLPHP in vitamin B6 metabolism are not well understood. To address these questions, we used PLPHP-deficient patient skin fibroblasts and HEK293 cells and YBL036C (PLPHP ortholog)-deficient yeast. We showed that independent of extracellular B6 vitamer type (pyridoxine, pyridoxamine, or pyridoxal), intracellular pyridoxal 5'-phosphate (PLP) was lower in PLPHP-deficient fibroblasts and HEK293 cells than controls. Culturing cells with pyridoxine or pyridoxamine led to the concentration-dependent accumulation of pyridoxine 5'-phosphate and pyridoxamine 5'-phosphate (PMP), respectively, suggesting insufficient pyridox(am)ine 5'-phosphate oxidase activity. Experiments utilizing 13C4-pyridoxine confirmed lower pyridox(am)ine 5'-phosphate oxidase activity and revealed increased fractional turnovers of PLP and pyridoxal, indicating increased PLP hydrolysis to pyridoxal in PLPHP-deficient cells. This effect could be partly counteracted by inactivation of pyridoxal phosphatase. PLPHP deficiency had a distinct effect on mitochondrial PLP and PMP, suggesting impaired activity of mitochondrial transaminases. Moreover, in YBL036C-deficient yeast, PLP was depleted and PMP accumulated only with carbon sources requiring mitochondrial metabolism. Lactate and pyruvate accumulation along with the decrease of tricarboxylic acid cycle intermediates downstream of α-ketoglutarate suggested impaired mitochondrial oxidative metabolism in PLPHP-deficient HEK293 cells. We hypothesize that impaired activity of mitochondrial transaminases may contribute to this depletion. Taken together, our study provides new insights into the pathomechanisms of PLPBP deficiency and reinforces the link between PLPHP function, vitamin B6 metabolism, and mitochondrial oxidative metabolism.


Assuntos
Mitocôndrias , Vitamina B 6 , Humanos , Células HEK293 , Proteínas/genética , Proteínas/metabolismo , Fosfato de Piridoxal/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transaminases/metabolismo , Vitamina B 6/metabolismo , Fibroblastos , Células Cultivadas , Piridoxaminafosfato Oxidase/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Oxirredução , Aminoácidos/metabolismo
5.
Metabolites ; 10(5)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443577

RESUMO

Next-generation sequencing and next-generation metabolic screening are, independently, increasingly applied in clinical diagnostics of inborn errors of metabolism (IEM). Integrated into a single bioinformatic method, these two -omics technologies can potentially further improve the diagnostic yield for IEM. Here, we present cross-omics: a method that uses untargeted metabolomics results of patient's dried blood spots (DBSs), indicated by Z-scores and mapped onto human metabolic pathways, to prioritize potentially affected genes. We demonstrate the optimization of three parameters: (1) maximum distance to the primary reaction of the affected protein, (2) an extension stringency threshold reflecting in how many reactions a metabolite can participate, to be able to extend the metabolite set associated with a certain gene, and (3) a biochemical stringency threshold reflecting paired Z-score thresholds for untargeted metabolomics results. Patients with known IEMs were included. We performed untargeted metabolomics on 168 DBSs of 97 patients with 46 different disease-causing genes, and we simulated their whole-exome sequencing results in silico. We showed that for accurate prioritization of disease-causing genes in IEM, it is essential to take into account not only the primary reaction of the affected protein but a larger network of potentially affected metabolites, multiple steps away from the primary reaction.

6.
Biochim Biophys Acta Gen Subj ; 1864(3): 129484, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31734463

RESUMO

BACKGROUND: High glutaminase (GLS;EC3.5.1.2) activity is an important pathophysiological phenomenon in tumorigenesis and metabolic disease. Insight into the metabolic consequences of high GLS activity contributes to the understanding of the pathophysiology of both oncogenic pathways and inborn errors of glutamate metabolism. Glutaminase catalyzes the conversion of glutamine into glutamate, thereby interconnecting many metabolic pathways. METHODS: We developed a HEK293-based cell-model that enables tuning of GLS activity by combining the expression of a hypermorphic GLS variant with incremental GLS inhibition. The metabolic consequences of increasing GLS activity were studied by metabolic profiling using Direct-Infusion High-Resolution Mass-Spectrometry (DI-HRMS). RESULTS AND CONCLUSIONS: Of 12,437 detected features [m/z], 109 features corresponding to endogenously relevant metabolites were significantly affected by high GLS activity. As expected, these included strongly decreased glutamine and increased glutamate levels. Additionally, increased levels of tricarboxylic acid (TCA) intermediates with a truncation of the TCA cycle at the level of citrate were detected as well as increased metabolites of transamination reactions, proline and ornithine synthesis and GABA metabolism. Levels of asparagine and nucleotide metabolites showed the same dependence on GLS activity as glutamine. Of the nucleotides, especially metabolites of the pyrimidine thymine metabolism were negatively impacted by high GLS activity, which is remarkable since their synthesis depend both on aspartate (product of glutamate) and glutamine levels. Metabolites of the glutathione synthesizing γ-glutamyl-cycle were either decreased or unaffected. GENERAL SIGNIFICANCE: By providing a metabolic fingerprint of increasing GLS activity, this study shows the large impact of high glutaminase activity on the cellular metabolome.


Assuntos
Ácido Glutâmico/metabolismo , Glutaminase/metabolismo , Asparagina/metabolismo , Linhagem Celular Tumoral , Ácido Glutâmico/fisiologia , Glutaminase/fisiologia , Glutamina/metabolismo , Glutationa/análogos & derivados , Glutationa/metabolismo , Células HEK293 , Humanos , Espectrometria de Massas/métodos , Redes e Vias Metabólicas/fisiologia , Prolina/metabolismo
7.
Biochim Biophys Acta Mol Basis Dis ; 1866(3): 165607, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31759955

RESUMO

Pyridox(am)ine 5'-phosphate oxidase (PNPO) catalyzes oxidation of pyridoxine 5'-phosphate (PNP) and pyridoxamine 5'-phosphate (PMP) to pyridoxal 5'-phosphate (PLP), the active form of vitamin B6. PNPO deficiency results in neonatal/infantile seizures and neurodevelopmental delay. To gain insight into this disorder we generated Pnpo deficient (pnpo-/-) zebrafish (CRISPR/Cas9 gene editing). Locomotion analysis showed that pnpo-/- zebrafish develop seizures resulting in only 38% of pnpo-/- zebrafish surviving beyond 20 days post fertilization (dpf). The age of seizure onset varied and survival after the onset was brief. Biochemical profiling at 20 dpf revealed a reduction of PLP and pyridoxal (PL) and accumulation of PMP and pyridoxamine (PM). Amino acids involved in neurotransmission including glutamate, γ-aminobutyric acid (GABA) and glycine were decreased. Concentrations of several, mostly essential, amino acids were increased in pnpo-/- zebrafish suggesting impaired activity of PLP-dependent transaminases involved in their degradation. PLP treatment increased survival at 20 dpf and led to complete normalization of PLP, PL, glutamate, GABA and glycine. However, amino acid profiles only partially normalized and accumulation of PMP and PM persisted. Taken together, our data indicate that not only decreased PLP but also accumulation of PMP may play a role in the clinical phenotype of PNPO deficiency.


Assuntos
Encefalopatias Metabólicas/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Piridoxaminafosfato Oxidase/deficiência , Convulsões/etiologia , Convulsões/metabolismo , Peixe-Zebra/metabolismo , Aminoácidos/metabolismo , Animais , Encefalopatias Metabólicas/etiologia , Oxirredutases/metabolismo , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/metabolismo , Piridoxamina/metabolismo , Piridoxaminafosfato Oxidase/metabolismo , Transmissão Sináptica/fisiologia
8.
Metabolites ; 9(10)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635433

RESUMO

Metabolomics studies aiming to find biomarkers frequently make use of historical or multicenter cohorts. These samples often have different pre-analytical conditions that potentially affect metabolite concentrations. We studied the effect of different storage conditions on the stability of small-molecule metabolites in cerebrospinal fluid to aid a reliable interpretation of metabolomics data. Three cerebrospinal fluid pools were prepared from surplus samples from the Amsterdam Dementia Cohort biobank. Aliquoted pools were exposed to different storage conditions to assess the temperature and freeze/thaw stability before final storage at -80 °C: storage up to four months at -20 °C and up to one week at either 5-8 °C or 18-22 °C and exposure to up to seven freeze/thaw cycles. Direct-infusion high-resolution mass spectrometry was performed, resulting in the identification of 1852 m/z peaks. To test the storage stability, principal component analyses, repeated measures analysis of variance, Kruskal‒Wallis tests, and fold change analyses were performed, all demonstrating that small-molecule metabolites in the cerebrospinal fluid (CSF) are relatively unaffected by 1‒3 freeze/thaw cycles, by storage at -20 °C up to two months, by storage at 5-8 °C for up to 72 h, or by storage at 18-22 °C for up to 8 h. This suggests that these differences do not affect the interpretation of potential small-molecule biomarkers in multicenter or historical cohorts and implies that these cohorts are suitable for biomarker studies.

9.
Mol Genet Metab ; 127(4): 368-372, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31311714

RESUMO

BACKGROUND: NGLY1-CDDG is a congenital disorder of deglycosylation caused by a defective peptide:N-glycanase (PNG). To date, all but one of the reported patients have been diagnosed through whole-exome or whole-genome sequencing, as no biochemical marker was available to identify this disease in patients. Recently, a potential urinary biomarker was reported, but the data presented suggest that this marker may be excreted intermittently. METHODS: In this study, we performed untargeted direct-infusion high-resolution mass spectrometry metabolomics in seven dried blood spots (DBS) from four recently diagnosed NGLY1-CDDG patients, to test for small-molecule biomarkers, in order to identify a potential diagnostic marker. Results were compared to 125 DBS of healthy controls and to 238 DBS of patients with other diseases. RESULTS: We identified aspartylglycosamine as the only significantly increased compound with a median Z-score of 4.8 (range: 3.8-8.5) in DBS of NGLY1-CDDG patients, compared to a median Z-score of -0.1 (range: -2.1-4.0) in DBS of healthy controls and patients with other diseases. DISCUSSION: The increase of aspartylglycosamine can be explained by lack of function of PNG. PNG catalyzes the cleavage of the proximal N-acetylglucosamine residue of an N-glycan from the asparagine residue of a protein, a step in the degradation of misfolded glycoproteins. PNG deficiency results in a single N-acetylglucosamine residue left attached to the asparagine residue which results in free aspartylglycosamine when the glycoprotein is degraded. Thus, we here identified aspartylglycosamine as the first potential small-molecule biomarker in DBS for NGLY1-CDDG, making a biochemical diagnosis for NGLY1-CDDG potentially feasible.


Assuntos
Acetilglucosamina/análogos & derivados , Defeitos Congênitos da Glicosilação/diagnóstico , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Acetilglucosamina/sangue , Adolescente , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/sangue , Teste em Amostras de Sangue Seco , Feminino , Humanos , Lactente , Masculino , Espectrometria de Massas , Mutação , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/sangue
10.
Nat Commun ; 10(1): 1477, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30931947

RESUMO

Phenotypic and biochemical categorization of humans with detrimental variants can provide valuable information on gene function. We illustrate this with the identification of two different homozygous variants resulting in enzymatic loss-of-function in LDHD, encoding lactate dehydrogenase D, in two unrelated patients with elevated D-lactate urinary excretion and plasma concentrations. We establish the role of LDHD by demonstrating that LDHD loss-of-function in zebrafish results in increased concentrations of D-lactate. D-lactate levels are rescued by wildtype LDHD but not by patients' variant LDHD, confirming these variants' loss-of-function effect. This work provides the first in vivo evidence that LDHD is responsible for human D-lactate metabolism. This broadens the differential diagnosis of D-lactic acidosis, an increasingly recognized complication of short bowel syndrome with unpredictable onset and severity. With the expanding incidence of intestinal resection for disease or obesity, the elucidation of this metabolic pathway may have relevance for those patients with D-lactic acidosis.


Assuntos
Acidose Láctica/diagnóstico , Lactato Desidrogenases/genética , Ácido Láctico/metabolismo , Mutação com Perda de Função , Síndrome do Intestino Curto/metabolismo , Espasmos Infantis/diagnóstico , Acidose Láctica/genética , Adulto , Animais , Consanguinidade , Diagnóstico Diferencial , Homozigoto , Humanos , Lactente , Lactato Desidrogenases/deficiência , Masculino , Espasmos Infantis/genética , Peixe-Zebra
11.
Mol Genet Metab ; 127(1): 51-57, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30926434

RESUMO

BACKGROUND: For inborn errors of metabolism (IEM), metabolomics is performed for three main purposes: 1) development of next generation metabolic screening platforms, 2) identification of new biomarkers in predefined patient cohorts and 3) for identification of new IEM. To date, plasma, urine and dried blood spots are used. We anticipate that cerebrospinal fluid (CSF) holds additional - valuable - information, especially for IEM with neurological involvement. To expand metabolomics to CSF, we here tested whether direct-infusion high-resolution mass spectrometry (DI-HRMS) based non-quantitative metabolomics could correctly capture the biochemical profile of patients with an IEM in CSF. METHODS: Eleven patient samples, harboring eight different IEM, and thirty control samples were analyzed using DI-HRMS. First we assessed whether the biochemical profile of the control samples represented the expected profile in CSF. Next, each patient sample was assigned a 'most probable diagnosis' by an investigator blinded for the known diagnoses of the patients. RESULTS: the biochemical profile identified using DI-HRMS in CSF samples resembled the known profile, with - among others - the highest median intensities for mass peaks annotated with glucose, lactic acid, citric acid and glutamine. Subsequent analysis of patient CSF profiles resulted in correct 'most probable diagnoses' for all eleven patients, including non-ketotic hyperglycinaemia, propionic aciduria, purine nucleoside phosphorylase deficiency, argininosuccinic aciduria, tyrosinaemia type I, hyperphenylalaninemia and hypermethioninaemia. CONCLUSION: We here demonstrate that DI-HRMS based non-quantitative metabolomics accurately captures the biochemical profile of this set of patients in CSF, opening new ways for using metabolomics in CSF in the metabolic diagnostic laboratory.


Assuntos
Erros Inatos do Metabolismo/líquido cefalorraquidiano , Erros Inatos do Metabolismo/diagnóstico , Metabolômica/métodos , Biomarcadores/líquido cefalorraquidiano , Humanos , Espectrometria de Massas
12.
Metabolites ; 9(1)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641898

RESUMO

In metabolic diagnostics, there is an emerging need for a comprehensive test to acquire a complete view of metabolite status. Here, we describe a non-quantitative direct-infusion high-resolution mass spectrometry (DI-HRMS) based metabolomics method and evaluate the method for both dried blood spots (DBS) and plasma. 110 DBS of 42 patients harboring 23 different inborn errors of metabolism (IEM) and 86 plasma samples of 38 patients harboring 21 different IEM were analyzed using DI-HRMS. A peak calling pipeline developed in R programming language provided Z-scores for ~1875 mass peaks corresponding to ~3835 metabolite annotations (including isomers) per sample. Based on metabolite Z-scores, patients were assigned a 'most probable diagnosis' by an investigator blinded for the known diagnoses of the patients. Based on DBS sample analysis, 37/42 of the patients, corresponding to 22/23 IEM, could be correctly assigned a 'most probable diagnosis'. Plasma sample analysis, resulted in a correct 'most probable diagnosis' in 32/38 of the patients, corresponding to 19/21 IEM. The added clinical value of the method was illustrated by a case wherein DI-HRMS metabolomics aided interpretation of a variant of unknown significance (VUS) identified by whole-exome sequencing. In summary, non-quantitative DI-HRMS metabolomics in DBS and plasma is a very consistent, high-throughput and nonselective method for investigating the metabolome in genetic disease.

13.
Cancer Chemother Pharmacol ; 81(5): 911-921, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29574584

RESUMO

PURPOSE: Chemotherapy-resistance remains a major obstacle to effective anti-cancer treatment. We previously showed that platinum analogs cause the release of two fatty acids. These platinum-induced fatty acids (PIFAs) induced complete chemoresistance in mice, whereas co-administration of a COX-1 inhibitor, indomethacin, prevented PIFA release and significantly enhanced chemosensitivity. To assess the safety of combining indomethacin with platinum-based chemotherapy, and to explore its efficacy and associated PIFA levels, a multi-center phase I trial was conducted. METHODS: The study was comprised of two arms: oxaliplatin plus capecitabine (CAPOX, arm I) and cisplatin plus gemcitabine, capecitabine or 5FU (arm II) in patients for whom these regimens were indicated as standard care. Indomethacin was escalated from 25 to 75 mg TID, using a standard 3 × 3 design per arm, and was administered orally 8 days around chemo-infusion from cycle two onwards. PIFA levels were measured before and after treatment initiation, with and without indomethacin. RESULTS: Thirteen patients were enrolled, of which ten were evaluable for safety analyses. In arm I, no dose-limiting toxicities were observed, and all indomethacin dose levels were well-tolerated. Partial responses were observed in three patients (30%). Indomethacin lowered plasma levels of 12-S-hydroxy-5,8,10-heptadecatrienoic acid (12-S-HHT), whereas 4,7,10,13-hexadecatetraenoic acid (16:4(n-3)) levels were not affected. Only one patient was included in arm II; renal toxicity led to closure of this cohort. CONCLUSIONS: Combined indomethacin and CAPOX treatment is safe and reduces the concentrations of 12-S-HHT, which may be associated with improved chemosensitivity. The recommended phase II dose is 75 mg indomethacin TID given 8 days surrounding standard dosed CAPOX.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Indometacina/farmacologia , Neoplasias/tratamento farmacológico , Compostos Organoplatínicos/farmacologia , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase/uso terapêutico , Relação Dose-Resposta a Droga , Esquema de Medicação , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ácidos Graxos/metabolismo , Feminino , Humanos , Indometacina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Neoplasias/patologia , Compostos Organoplatínicos/uso terapêutico , Estudos Prospectivos , Resultado do Tratamento
14.
J Inherit Metab Dis ; 40(6): 883-891, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28801717

RESUMO

Pyridoxal 5'-phosphate (PLP), the metabolically active form of vitamin B6, plays an essential role in brain metabolism as a cofactor in numerous enzyme reactions. PLP deficiency in brain, either genetic or acquired, results in severe drug-resistant seizures that respond to vitamin B6 supplementation. The pathogenesis of vitamin B6 deficiency is largely unknown. To shed more light on the metabolic consequences of vitamin B6 deficiency in brain, we performed untargeted metabolomics in vitamin B6-deprived Neuro-2a cells. Significant alterations were observed in a range of metabolites. The most surprising observation was a decrease of serine and glycine, two amino acids that are known to be elevated in the plasma of vitamin B6 deficient patients. To investigate the cause of the low concentrations of serine and glycine, a metabolic flux analysis on serine biosynthesis was performed. The metabolic flux results showed that the de novo synthesis of serine was significantly reduced in vitamin B6-deprived cells. In addition, formation of glycine and 5-methyltetrahydrofolate was decreased. Thus, vitamin B6 is essential for serine de novo biosynthesis in neuronal cells, and serine de novo synthesis is critical to maintain intracellular serine and glycine. These findings suggest that serine and glycine concentrations in brain may be deficient in patients with vitamin B6 responsive epilepsy. The low intracellular 5-mTHF concentrations observed in vitro may explain the favourable but so far unexplained response of some patients with pyridoxine-dependent epilepsy to folinic acid supplementation.


Assuntos
Serina/metabolismo , Vitamina B 6/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Glicina/sangue , Glicina/metabolismo , Humanos , Fosfato de Piridoxal/sangue , Fosfato de Piridoxal/metabolismo , Piridoxina/sangue , Serina/sangue , Vitamina B 6/sangue , Deficiência de Vitamina B 6/sangue , Deficiência de Vitamina B 6/metabolismo
15.
Anal Chim Acta ; 979: 45-50, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28599708

RESUMO

Diagnosis and treatment of inborn errors of metabolism (IEM) require the analysis of a variety of metabolites. These compounds are usually quantified by targeted platforms. High resolution mass spectrometry (HRMS) has the potential to detect hundreds to thousands of metabolites simultaneously. A chip-based nanoelectrospray source (chip-based nanoESI) enables the direct infusion of biological samples. Major advantages of this system include high sample throughput, no sample carryover, and low sample consumption. The combination, chip-based nanoESI-HRMS enables untargeted metabolomics of biological samples but its potential for quantification of metabolites has not been reported. We investigated whether chip-based nanoESI-HRMS is suitable for quantification of metabolites in dried blood spots (DBS). After addition of internal standards, metabolites were extracted with methanol. Aliquots of each extract were analysed by chip-based nanoESI-HRMS operating in both positive and negative mode with an m/z window of 70-600 and a resolution of 140,000. Total run time was 4.5 min per sample and a full report could be generated within 40 min. Concentrations of all 21 investigated diagnostic metabolites in DBS as quantified by chip-based nanoESI-HRMS correlated well with those obtained by targeted liquid chromatography-tandem mass spectrometry. We conclude that chip-based nanoESI-HRMS is suitable for quantification.


Assuntos
Teste em Amostras de Sangue Seco , Espectrometria de Massas , Metabolômica , Cromatografia Líquida , Humanos , Metanol , Padrões de Referência , Espectrometria de Massas em Tandem
16.
Nature ; 543(7645): 424-427, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28273069

RESUMO

The small intestinal epithelium self-renews every four or five days. Intestinal stem cells (Lgr5+ crypt base columnar cells (CBCs)) sustain this renewal and reside between terminally differentiated Paneth cells at the bottom of the intestinal crypt. Whereas the signalling requirements for maintaining stem cell function and crypt homeostasis have been well studied, little is known about how metabolism contributes to epithelial homeostasis. Here we show that freshly isolated Lgr5+ CBCs and Paneth cells from the mouse small intestine display different metabolic programs. Compared to Paneth cells, Lgr5+ CBCs display high mitochondrial activity. Inhibition of mitochondrial activity in Lgr5+ CBCs or inhibition of glycolysis in Paneth cells strongly affects stem cell function, as indicated by impaired organoid formation. In addition, Paneth cells support stem cell function by providing lactate to sustain the enhanced mitochondrial oxidative phosphorylation in the Lgr5+ CBCs. Mechanistically, we show that oxidative phosphorylation stimulates p38 MAPK activation by mitochondrial reactive oxygen species signalling, thereby establishing the mature crypt phenotype. Together, our results reveal a critical role for the metabolic identity of Lgr5+ CBCs and Paneth cells in supporting optimal stem cell function, and we identify mitochondria and reactive oxygen species signalling as a driving force of cellular differentiation.


Assuntos
Autorrenovação Celular , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Células-Tronco/citologia , Animais , Diferenciação Celular , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Glicólise , Homeostase , Ácido Láctico/metabolismo , Camundongos , Mitocôndrias/metabolismo , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Fosforilação Oxidativa , Celulas de Paneth/citologia , Celulas de Paneth/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Células-Tronco/fisiologia , Proteína Wnt3A/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Gastroenterology ; 152(6): 1462-1476.e10, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28130067

RESUMO

BACKGROUND & AIMS: The nuclear receptor subfamily 1 group H member 4 (NR1H4 or farnesoid X receptor [FXR]) regulates bile acid synthesis, transport, and catabolism. FXR also regulates postprandial lipid and glucose metabolism. We performed quantitative proteomic analyses of liver tissues from mice to evaluate these functions and investigate whether FXR regulates amino acid metabolism. METHODS: To study the role of FXR in mouse liver, we used mice with a disruption of Nr1h4 (FXR-knockout mice) and compared them with floxed control mice. Mice were gavaged with the FXR agonist obeticholic acid or vehicle for 11 days. Proteome analyses, as well as targeted metabolomics and chromatin immunoprecipitation, were performed on the livers of these mice. Primary rat hepatocytes were used to validate the role of FXR in amino acid catabolism by gene expression and metabolomics studies. Finally, control mice and mice with liver-specific disruption of Nr1h4 (liver FXR-knockout mice) were re-fed with a high-protein diet after 6 hours fasting and gavaged a 15NH4Cl tracer. Gene expression and the metabolome were studied in the livers and plasma from these mice. RESULTS: In livers of control mice and primary rat hepatocytes, activation of FXR with obeticholic acid increased expression of proteins that regulate amino acid degradation, ureagenesis, and glutamine synthesis. We found FXR to bind to regulatory sites of genes encoding these proteins in control livers. Liver tissues from FXR-knockout mice had reduced expression of urea cycle proteins, and accumulated precursors of ureagenesis, compared with control mice. In liver FXR-knockout mice on a high-protein diet, the plasma concentration of newly formed urea was significantly decreased compared with controls. In addition, liver FXR-knockout mice had reduced hepatic expression of enzymes that regulate ammonium detoxification compared with controls. In contrast, obeticholic acid increased expression of genes encoding enzymes involved in ureagenesis compared with vehicle in C57Bl/6 mice. CONCLUSIONS: In livers of mice, FXR regulates amino acid catabolism and detoxification of ammonium via ureagenesis and glutamine synthesis. Failure of the urea cycle and hyperammonemia are common in patients with acute and chronic liver diseases; compounds that activate FXR might promote ammonium clearance in these patients.


Assuntos
Amônia/metabolismo , Glutamina/biossíntese , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Ureia/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacologia , Proteínas Alimentares/administração & dosagem , Expressão Gênica , Hepatócitos , Fígado/enzimologia , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteoma , Ratos , Ratos Wistar , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores
18.
Neurobiol Aging ; 42: 213-6, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27143438

RESUMO

Cerebrospinal fluid (CSF) levels of d-serine were recently reported as a potential new biomarker for Alzheimer's disease (AD), showing a perfect distinction between AD patients and healthy controls. In this study, we aimed to confirm these results and extend these previous findings to dementia with Lewy bodies and frontotemporal dementia. d-Serine levels in CSF of 29 AD patients, 8 dementia with Lewy bodies patients, 14 frontotemporal dementia patients, and 28 nondemented controls were measured using ultra-high-performance liquid chromatography-tandem mass spectrometry. In contrast to previous findings, in our study CSF d-serine levels were only slightly increased in AD patients compared with controls. CSF d-serine in AD did not differ from other dementias and was also not correlated to mini-mental state examination-scores. Owing to the large overlap of d-serine levels, we conclude that CSF d-serine is neither a suitable biomarker for AD nor for cognitive decline.


Assuntos
Envelhecimento/líquido cefalorraquidiano , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Demência/líquido cefalorraquidiano , Demência/diagnóstico , Serina/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/líquido cefalorraquidiano , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem
19.
JAMA Oncol ; 1(3): 350-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26181186

RESUMO

IMPORTANCE: Our research group previously identified specific endogenous platinum-induced fatty acids (PIFAs) that, in picomolar quantities, activate splenic macrophages leading to resistance to chemotherapy in mouse models. Fish oil was shown to contain the PIFA 16:4(n-3) (hexadeca-4,7,10,13-tetraenoic acid) and when administered to mice neutralized chemotherapy activity. OBJECTIVE: Because patients with cancer frequently use fish oil supplements, we set out to determine exposure to 16:4(n-3) after intake of fish or fish oil. DESIGN, SETTING, AND PARTICIPANTS: (1) In November 2011, 400 patients with cancer undergoing treatment at the University Medical Center Utrecht were surveyed to determine their use of fish oil supplements; 118 patients responded to the questionnaire (30%); (2) pharmacokinetic analysis of the 16:4(n-3) content of 6 fish oils and 4 fishes was carried out; (3) from April through November 2012, a healthy volunteer study was performed to determine 16:4(n-3) plasma levels after intake of 3 different brands of fish oil or 4 different fish species. Thirty healthy volunteers were randomly selected for the fish oil study; 20 were randomly selected for the fish study. These studies were supported by preclinical tumor experiments in mice to determine chemoresistance conducted between September 2011 and December 2012. MAIN OUTCOMES AND MEASURES: (1) Rate of use of fish oil supplements among patients undergoing cancer treatment at our institution; (2) levels of 16:4(n-3) present in 3 brands of fish oil and 4 species of fish; and (3) plasma levels of 16:4(n-3) present in healthy volunteers after consuming fish oil or fish. RESULTS: Eleven percent of respondents reported using omega-3 supplements. All fish oils tested contained relevant amounts of 16:4(n-3), from 0.2 to 5.7 µM. Mouse experiments showed that addition of 1 µL of fish oil to cisplatin was sufficient to induce chemoresistance, treatment having no impact on the growth rate of tumors compared with vehicle-treated controls (estimated tumor volume difference, 44.1 mm3; P > .99). When the recommended daily amount of 10 mL of fish oil was administered to healthy volunteers, rises in plasma 16:4(n-3) levels were observed, reaching up to 20 times the baseline levels. Herring and mackerel contained high levels of 16:4(n-3) in contrast to salmon and tuna. Consumption of fish with high levels of 16:4(n-3) also resulted in elevated plasma levels of 16:4(n-3). CONCLUSIONS AND RELEVANCE: All tested fish oils and herring and mackerel fishes contained relevant levels of fatty acid 16:4(n-3), a fatty acid with chemotherapy-negating effects in preclinical models. After ingestion of these fish oils or fishes, 16:4(n-3) was rapidly taken up in the plasma of human volunteers. Until further data become available, fish oil and fish containing high levels of 16:4(n-3) may best be avoided on the days surrounding chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Suplementos Nutricionais , Resistencia a Medicamentos Antineoplásicos , Ácidos Graxos/sangue , Óleos de Peixe/administração & dosagem , Peixes , Interações Alimento-Droga , Neoplasias/tratamento farmacológico , Alimentos Marinhos , Centros Médicos Acadêmicos , Animais , Biomarcadores/sangue , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Relação Dose-Resposta a Droga , Óleos de Peixe/farmacocinética , Pesquisas sobre Atenção à Saúde , Humanos , Irinotecano , Camundongos Endogâmicos BALB C , Neoplasias/sangue , Neoplasias/patologia , Países Baixos , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Inquéritos e Questionários , Carga Tumoral , Regulação para Cima
20.
EMBO Rep ; 16(4): 456-66, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25648147

RESUMO

FOXO transcription factors are considered bona fide tumor suppressors; however, recent studies showed FOXOs are also required for tumor survival. Here, we identify FOXOs as transcriptional activators of IDH1. FOXOs promote IDH1 expression and thereby maintain the cytosolic levels of α-ketoglutarate and NADPH. In cancer cells carrying mutant IDH1, FOXOs likewise stimulate mutant IDH1 expression and maintain the levels of the oncometabolite 2-hydroxyglutarate, which stimulates cancer cell proliferation and inhibits TET enzymes and histone demethylases. Combined, our data provide a new paradigm for the paradoxical role of FOXOs in both tumor suppression and promotion.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Isocitrato Desidrogenase/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular , Linhagem Celular , Proliferação de Células , Ciclo do Ácido Cítrico/genética , Ativação Enzimática , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Glutaratos/metabolismo , Células HeLa , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Íntrons , Isocitrato Desidrogenase/genética , Ácidos Cetoglutáricos/metabolismo , NADP/metabolismo , Ligação Proteica , Transdução de Sinais , Fatores de Transcrição/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...