Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 52(21): 12216-12224, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30351034

RESUMO

In a controlled growth experiment we found that the cyanobacterium Nostoc punctiforme has a bulk cell 26Mg/24Mg ratio (expressed as δ26Mg) that is -0.27‰ lower than the growth solution at a pH of ca. 5.9. This contrasts with a recently published δ26Mg value that was 0.65‰ higher than growth solution for the black fungus Knufia petricola at similar laboratory conditions, interpreted to reflect loss of 24Mg during cell growth. By a mass balance model constrained by δ26Mg in chlorophyll extract we inferred the δ26 Mg value of the main Mg compartments in a cyanobacteria cell: free cytosolic Mg (-2.64‰), chlorophyll (1.85‰), and the nonchlorophyll-bonded Mg compartments like ATP and ribosomes (-0.64‰). The lower δ26Mg found in Nostoc punctiforme would thus result from the absence of significant Mg efflux during cell growth in combination with either (a) discrimination against 26Mg during uptake by desolvation of Mg or transport across protein channels or (b) discrimination against 24Mg in the membrane transporter during efflux. The model predicts the preferential incorporation of 26Mg in cells and plant organs low in Mg and the absence of isotope fractionation in those high in Mg, corroborated by a compilation of Mg isotope ratios from fungi, bacteria, and higher plants.


Assuntos
Magnésio , Nostoc , Fracionamento Químico , Isótopos , Plantas
2.
Environ Sci Technol ; 51(17): 9691-9699, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28758385

RESUMO

The model rock-inhabiting microcolonial fungus Knufia petricola fractionates stable Mg isotopes in a time- and pH-dependent manner. During growth, the increase of 26Mg/24Mg in the fungal cells relative to the growth media amounted to 0.65 ± 0.14‰ at pH 6 and 1.11 ± 0.35‰ at pH 3. We suggest a constant equilibrium fractionation factor during incorporation of Mg into ribosomes and ATP as a cause of enrichment of 26Mg in the cells. We suggest too that the proton gradient across the cell wall and cytoplasmic membrane controls Mg2+ transport into the fungal cell. As the strength of this gradient is a function of extracellular solution pH, the pH-dependence on Mg isotope fractionation is thus due to differences in fungal cell mass fluxes. Through a mass balance model we show that Mg uptake into the fungal cell is not associated with a unique Mg isotope fractionation factor. This Mg isotope fractionation dependence on pH might also be observed in any organism with cells that follow similar Mg uptake and metabolic pathways and serves to reveal Mg cycling in ecosystems.


Assuntos
Ascomicetos , Fracionamento Químico , Magnésio/química , Concentração de Íons de Hidrogênio , Isótopos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...