Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Front Immunol ; 15: 1306490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873594

RESUMO

Recurrent exposures to a pathogenic antigen remodel the CD8+ T cell compartment and generate a functional memory repertoire that is polyclonal and complex. At the clonotype level, the response to the conserved influenza antigen, M158-66 has been well characterized in healthy individuals, but not in patients receiving immunosuppressive therapy or with aberrant immunity, such as those with juvenile idiopathic arthritis (JIA). Here we show that patients with JIA have a reduced number of M158-66 specific RS/RA clonotypes, indicating decreased clonal richness and, as a result, have lower repertoire diversity. By using a rank-frequency approach to analyze the distribution of the repertoire, we found several characteristics of the JIA T cell repertoire to be akin to repertoires seen in healthy adults, including an amplified RS/RA-specific antigen response, representing greater clonal unevenness. Unlike mature repertoires, however, there is more fluctuation in clonotype distribution, less clonotype stability, and more variable IFNy response of the M158-66 specific RS/RA clonotypes in JIA. This indicates that functional clonal expansion is altered in patients with JIA on immunosuppressive therapies. We propose that the response to the influenza M158-66 epitope described here is a general phenomenon for JIA patients receiving immunosuppressive therapy, and that the changes in clonal richness and unevenness indicate a retarded and uneven generation of a mature immune response.


Assuntos
Artrite Juvenil , Linfócitos T CD8-Positivos , Vacinas contra Influenza , Influenza Humana , Humanos , Artrite Juvenil/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Feminino , Criança , Masculino , Adolescente , Vacinação , Células Clonais/imunologia , Pré-Escolar , Memória Imunológica , Adulto Jovem
3.
NPJ Precis Oncol ; 3: 24, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31602400

RESUMO

Metastatic outcomes depend on the interactions of metastatic cells with a specific organ microenvironment. Our previous studies have shown that triple-negative breast cancer (TNBC) MDA-MB-231 cells passaged in astrocyte-conditioned medium (ACM) show proclivity to form brain metastases, but the underlying mechanism is unknown. The combination of microarray analysis, qPCR, and ELISA assay were carried out to demonstrate the ACM-induced expression of angiopoietin-like 4 (ANGPTL4) in TNBC cells. A stable ANGPTL4-knockdown MDA-MB-231 cell line was generated by ANGPTL4 short-hairpin RNA (shRNA) and inoculated into mice via left ventricular injection to evaluate the role of ANGPTL4 in brain metastasis formation. The approaches of siRNA, neutralizing antibodies, inhibitors, and immunoprecipitation were used to demonstrate the involved signaling molecules. We first found that ACM-conditioned TNBC cells upregulated the expression of ANGPTL4, a secreted glycoprotein whose effect on tumor progression is known to be tumor microenvironment- and tumor-type dependent. Knockdown of ANGPTL4 in TNBC MDA-MB-231 cells with shRNA decreased ACM-induced tumor cell metastatic growth in the brain and attributed to survival in a mouse model. Furthermore, we identified that astrocytes produced transforming growth factor-beta 2 (TGF-ß2), which in part is responsible for upregulation of ANGPTL4 expression in TNBC through induction of SMAD signaling. Moreover, we identified that tumor cells communicate with astrocytes, where tumor cell-derived interleukin-1 beta (IL-1ß) and tumor necrosis factor alpha (TNF-α) increased the expression of TGF-ß2 in astrocytes. Collectively, these findings indicate that the invading TNBC cells interact with astrocytes in the brain microenvironment that facilitates brain metastases of TNBC cells through a TGF-ß2/ANGPTL4 axis. This provides groundwork to target ANGPTL4 as a treatment for breast cancer brain metastases.

4.
J Immunother Cancer ; 7(1): 115, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036082

RESUMO

Pancreatic cancer is characterized by an immune suppressive stromal reaction that creates a barrier to therapy. A murine transgenic pancreatic cancer cell line that recapitulates human disease was used to test whether a STimulator of Interferon Genes (STING) agonist could reignite immunologically inert pancreatic tumors. STING agonist treatment potently changed the tumor architecture, altered the immune profile, and increased the survival of tumor-bearing mice. Notably, STING agonist increased numbers and activity of cytotoxic T cells within tumors and decreased levels of suppressive regulatory T cells. Further, STING agonist treatment upregulated costimulatory molecule expression on cross-presenting dendritic cells and reprogrammed immune-suppressive macrophages into immune-activating subtypes. STING agonist promoted the coordinated and differential cytokine production by dendritic cells, macrophages, and pancreatic cancer cells. Cumulatively, these data demonstrate that pancreatic cancer progression is potently inhibited by STING agonist, which reignited immunologically cold pancreatic tumors to promote trafficking and activation of tumor-killing T cells.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Membrana/agonistas , Neoplasias Pancreáticas/tratamento farmacológico , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral/transplante , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Feminino , Proteínas de Homeodomínio/genética , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Proteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia , Microambiente Tumoral/imunologia , Xantonas/farmacologia , Xantonas/uso terapêutico
5.
Int J Hematol Oncol ; 8(1): IJH10, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30863527

RESUMO

Children with multiple relapsed or refractory leukemia have dismal survival. Research has identified engagement of immune checkpoint receptors (e.g., PD-1, PD-L1 and CTLA-4) as a mechanism for treatment resistance. For adult cancer, inhibitors of PD-1 (nivolumab) and CTLA-4 (ipilimumab) have shown promise with response rates ranging from 7 to 40%. In vitro studies using acute myeloid leukemia cell lines have shown that acute myeloid leukemia blasts may similarly utilize the PD-1/PD-L1 axis to evade an anticancer immune response. We report the first case of a pediatric patient with multiple relapsed/refractory leukemia treated with nivolumab, ipilimumab and 5-azacytidine who tolerated therapy with brief improvement of symptoms.

6.
Cancer Epidemiol Biomarkers Prev ; 28(4): 680-689, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30530849

RESUMO

BACKGROUND: Despite the accessibility of blood, identification of systemic biomarkers associated with cancer progression has been especially challenging. The aim of this study was to determine a difference in baseline serum immune signatures in patients that experienced early pancreatic ductal adenocarcinoma (PDAC) metastasis compared with patients that did not. We hypothesized that immune mediators would differ in the baseline serum of these patient cohorts. To test this hypothesis, novel approaches of systemic immune analysis were performed. METHODS: A serum-induced transcriptional assay was used to identify transcriptome signatures. To enable an understanding of the transcriptome data in a global sense, a transcriptome index was calculated for each patient taking into consideration the relationship of up- and downregulated transcripts. For each patient, serum cytokine concentrations were also analyzed globally as a cytokine index (CI). RESULTS: A transcriptome signature of innate type I IFN inflammation was identified in patients that experienced early metastatic progression. Patients without early metastatic progression had a baseline transcriptome signature of TGFß/IL10-regulated acute inflammation. The transcriptome index was greater in patients with early metastasis. There was a significant difference in the CI in patients with and without early metastatic progression. CONCLUSIONS: The association of serum-induced transcriptional signatures with PDAC metastasis is a novel finding. Global assessment of serum cytokine concentrations as a CI is a novel approach to assess systemic cancer immunity. IMPACT: These systemic indices can be assessed in combination with tumor markers to further define subsets of PDAC that will provide insight into effective treatment, progression, and outcome.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Citocinas/genética , Transcriptoma/genética , Progressão da Doença , Feminino , Humanos , Masculino , Metástase Neoplásica , Prognóstico
7.
J Pediatr Hematol Oncol ; 41(8): 648-652, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-29912035

RESUMO

Adoptive cell therapy (ACT) of chimeric antigen receptor T cells has demonstrated remarkable success for the treatment of pediatric B-cell leukemia. For patients who are not candidates for chimeric antigen receptor T-cell therapy, ACT using tumor antigen-experienced polyclonal T cells may be a treatment option. Since leukemic blasts reside in the bone marrow and bone marrow is a preferred site for homeostatic proliferation of cytotoxic memory CD8 T cells, we hypothesized that bone marrow would be a source of activated T cells. The aim of this study was to determine the feasibility of using bone marrow-derived T cells following postinduction chemotherapy for use in adoptive cell transfer. Matched patient samples of bone marrow and peripheral blood-derived T cells expanded ex vivo and displayed similar apoptotic profiles. Before activation and expansion, there was a significant increase in the percentage of bone marrow-derived CD8 T cells expressing activation markers PD1, CD45RO, and CD69 as compared with peripheral blood CD8 T cells. Considering, melanoma-reactive CD8 T cells reside in the subset of PD1CD8 T cells, the bone marrow may be an enriched source leukemic-specific T cells that can be used for ACT.


Assuntos
Apoptose/imunologia , Células da Medula Óssea/imunologia , Linfócitos T CD8-Positivos/imunologia , Regulação Leucêmica da Expressão Gênica/imunologia , Memória Imunológica , Quimioterapia de Indução , Leucemia , Proteínas de Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia , Antígenos de Diferenciação/imunologia , Células da Medula Óssea/patologia , Linfócitos T CD8-Positivos/patologia , Criança , Feminino , Humanos , Leucemia/tratamento farmacológico , Leucemia/imunologia , Leucemia/patologia , Masculino
8.
J Leukoc Biol ; 104(5): 883-893, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30063264

RESUMO

Inhibitory cell surface proteins on T cells are often dynamically regulated, which contributes to their physiologic function. PECAM-1 (CD31) is an inhibitory receptor that facilitates TGF-ß-mediated suppression of T cell activity. It is well established in CD4+ T cells that PECAM-1 is expressed in naïve recent thymic emigrants, but is down-regulated after acute T cell activation and absent from memory cells. The extent to which PECAM-1 expression is similarly regulated in CD8+ T cells is much less well characterized. We evaluated T cells recovered from mice after infection with a model intracellular pathogen and determined that, in CD8+ T cells, PECAM-1 expression was strongly down-regulated during acute infection but re-expressed to intermediate levels in memory cells. Down-regulation of PECAM-1 expression in CD8+ T cells was transcriptionally regulated and affected by the strength and nature of TCR signaling. PECAM-1 was also detected on the surface of human activated/memory CD8+ , but not CD4+ T cells. These data demonstrate that PECAM-1 expression is dynamically regulated, albeit differently, in both CD4+ and CD8+ T cells. Furthermore, unlike memory CD4+ T cells, memory CD8+ T cells retain PECAM-1 expression and have the potential to be modulated by this inhibitory receptor.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Ativação Linfocitária/imunologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Molécula-1 de Adesão Celular Endotelial a Plaquetas/biossíntese
9.
BMC Cancer ; 18(1): 335, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587663

RESUMO

BACKGROUND: Patient-derived tumor models are the new standard for pre-clinical drug testing and biomarker discovery. However, the emerging technology of primary pancreatic cancer organoids has not yet been broadly implemented in research, and complex organotypic models using organoids in co-culture with stromal and immune cellular components of the tumor have yet to be established. In this study, our objective was to develop and characterize pancreatic cancer organoids and multi-cell type organotypic co-culture models to demonstrate their applicability to the study of pancreatic cancer. METHODS: We employed organoid culture methods and flow cytometric, cytologic, immunofluorescent and immunohistochemical methods to develop and characterize patient-derived pancreatic cancer organoids and multi-cell type organotypic co-culture models of the tumor microenvironment. RESULTS: We describe the culture and characterization of human pancreatic cancer organoids from resection, ascites and rapid autopsy sources and the derivation of adherent tumor cell monocultures and tumor-associated fibroblasts from these sources. Primary human organoids displayed tumor-like cellular morphology, tissue architecture and polarity in contrast to cell line spheroids, which formed homogenous, non-lumen forming spheres. Importantly, we demonstrate the construction of complex organotypic models of tumor, stromal and immune components of the tumor microenvironment. Activation of myofibroblast-like cancer associated fibroblasts and tumor-dependent lymphocyte infiltration were observed in these models. CONCLUSIONS: These studies provide the first report of novel and disease-relevant 3D in-vitro models representing pancreatic tumor, stromal and immune components using primary organoid co-cultures representative of the tumor-microenvironment. These models promise to facilitate the study of tumor-stroma and tumor-immune interaction and may be valuable for the assessment of immunotherapeutics such as checkpoint inhibitors in the context of T-cell infiltration.


Assuntos
Técnicas de Cultura de Células , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Células Estromais/patologia , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Humanos , Técnicas In Vitro , Esferoides Celulares , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Tumorais Cultivadas
10.
Cancer Res ; 77(20): 5676-5686, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916658

RESUMO

Efforts to improve the efficacy of adoptive T-cell therapies and immune checkpoint therapies in myelogenous leukemia are desired. In this study, we evaluated the antileukemia activity of adoptively transferred polyclonal cancer antigen-reactive T cells deficient in the regulator diacylglycerol kinase zeta (DGKζ) with or without PD-1/PD-L1 blockade. In the C1498 mouse model of myeloid leukemia, we showed that leukemia was eradicated more effectively in DGKζ-deficient (DGKζ-/-) mice than wild-type mice. T cells transferred from DGKζ-deficient mice to wild-type tumor-bearing recipients conferred this benefit. Leukemia clearance was similar to mice treated with anti-PD-L1. Strikingly, we found that the activity of adoptively transferred DGKζ-/- T cells relied partly on induction of sustainable host T-cell immunity. Transferring DGKζ-deficient T cells increased the levels of IFNγ and other cytokines in recipient mice, especially with coadministration of anti-PD-L1. Overall, our results offered evidence that targeting DGKζ may leverage the efficacy of adoptive T-cell and immune checkpoint therapies in leukemia treatment. Furthermore, they suggest that DGKζ targeting might decrease risks of antigen escape or resistance to immune checkpoint blockade. Cancer Res; 77(20); 5676-86. ©2017 AACR.


Assuntos
Diacilglicerol Quinase/imunologia , Imunoterapia Adotiva/métodos , Leucemia/imunologia , Leucemia/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T/enzimologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais , Linfócitos T/imunologia
11.
J Immunother Cancer ; 5: 51, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642819

RESUMO

BACKGROUND: Adoptive cellular therapy (ACT) with cancer antigen-reactive T cells following lymphodepletive pre-conditioning has emerged as a potentially curative therapy for patients with advanced cancers. However, identification and enrichment of appropriate T cell subsets for cancer eradication remains a major challenge for hematologic cancers. METHODS: PD-1+ and PD-1- T cell subsets from myeloma-bearing mice were sorted and analyzed for myeloma reactivity in vitro. In addition, the T cells were activated and expanded in culture and given to syngeneic myeloma-bearing mice as ACT. RESULTS: Myeloma-reactive T cells were enriched in the PD-1+ cell subset. Similar results were also observed in a mouse AML model. PD-1+ T cells from myeloma-bearing mice were found to be functional, they could be activated and expanded ex vivo, and they maintained their anti-myeloma reactivity after expansion. Adoptive transfer of ex vivo-expanded PD-1+ T cells together with a PD-L1 blocking antibody eliminated established myeloma in Rag-deficient mice. Both CD8 and CD4 T cell subsets were important for eradicating myeloma. Adoptively transferred PD-1+ T cells persisted in recipient mice and were able to mount an adaptive memory immune response. CONCLUSIONS: These results demonstrate that PD-1 is a biomarker for functional myeloma-specific T cells, and that activated and expanded PD-1+ T cells can be effective as ACT for myeloma. Furthermore, this strategy could be useful for treating other hematologic cancers.


Assuntos
Linfócitos T CD8-Positivos/transplante , Mieloma Múltiplo/terapia , Receptor de Morte Celular Programada 1/sangue , Subpopulações de Linfócitos T/transplante , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Citocinas/biossíntese , Memória Imunológica/imunologia , Imunofenotipagem , Imunoterapia Adotiva/métodos , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Camundongos Endogâmicos C57BL , Mieloma Múltiplo/imunologia , Subpopulações de Linfócitos T/imunologia , Células Tumorais Cultivadas
12.
Oncotarget ; 7(28): 43363-43375, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27270319

RESUMO

Substantial experimental evidence has shown that dedifferentiation from an epithelial state to a mesenchymal-like state (EMT) drives tumor cell metastasis. This transition facilitates tumor cells to acquire motility and invasive features. Intriguingly, tumor cells at the metastatic site are primarily epithelial, and it is believed that they differentiate back to an epithelial state by a process called mesenchymal to epithelial transition (MET). However, there is little in vivo evidence to support the MET process. To investigate EMT and MET in vivo, we generated two epithelial (E) and two mesenchymal (M) primary clonal cell lines from a spontaneous mouse mammary tumor (Tg MMTV/neu). These cells were labeled with reporters (GFP and luciferase), and tracked in vivo during primary tumor growth and subsequent secondary metastasis. Once E cells were implanted into the mammary fat pad, E-cadherin expression progressively decreased and continued to decrease as the primary tumor enlarged over time. A greater percentage of E tumor cells expressed E-cadherin at the secondary metastatic site as compared to the corresponding primary tumor site. Collectively, these data provide direct in vivo evidence that epithelial tumor cells have metastatic potential, undergo EMT at the primary tumor site, and MET at the metastatic site.


Assuntos
Caderinas/metabolismo , Células Clonais/metabolismo , Transição Epitelial-Mesenquimal , Neoplasias Mamárias Experimentais/patologia , Invasividade Neoplásica/patologia , Animais , Mama/citologia , Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Células Clonais/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/secundário , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos , Análise em Microsséries , Cultura Primária de Células , Baço/patologia
15.
J Immunother Cancer ; 3: 24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26082836

RESUMO

BACKGROUND: Neuroblastoma is a pediatric cancer of neural crest origin. Despite aggressive treatment, mortality remains at 40 % for patients with high-risk disseminated disease, underscoring the need to test new combinations of therapies. In murine tumor models, our laboratory previously showed that T cell-mediated anti-tumor immune responses improve in the context of lymphopenia. The goal of this study was to incorporate lymphodepletion into an effective immune therapy that can be easily translated into neuroblastoma standard of care. Based on the lymphodepleting effects of cyclophosphamide, we hypothesized that cyclophosphamide would synergize with the TLR9 agonist, CpG oligodeoxynucleotide (ODN), to produce a T cell-mediated anti-neuroblastoma effect. METHODS: To test this hypothesis, we used the AgN2a aggressive murine model of neuroblastoma. Mice bearing subcutaneous tumors were treated with cyclophosphamide followed by treatment with tumor cell lysate mixed with CpG ODN injected at the tumor site. RESULTS: Subcutaneous neuroblastoma regressed only in mice that were treated with 100 mg/kg cyclophosphamide prior to receiving treatments of tumor lysate mixed with CpG ODN. The anti-neuroblastoma response was T cell-mediated. Synergy between cyclophosphamide and the tumor lysate/CpG ODN treatment influenced the production of anti-tumor CD8 T cell effectors, and dendritic cell homeostasis. For clinical consideration, an allogeneic tumor lysate was used effectively with this protocol to eliminate AgN2a tumor in vivo. CONCLUSION: Synergistic immune modulating effects of cyclophosphamide and a treatment containing tumor cell lysate and CpG ODN provide T cell-mediated anti-tumor activity against murine neuroblastoma.

16.
J Immunother Cancer ; 3(1): 2, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25614821

RESUMO

BACKGROUND: Multiple myeloma is characterized by the presence of transformed neoplastic plasma cells in the bone marrow and is generally considered to be an incurable disease. Successful treatments will likely require multi-faceted approaches incorporating conventional drug therapies, immunotherapy and other novel treatments. Our lab previously showed that a combination of transient lymphodepletion (sublethal whole body irradiation) and PD-1/PD-L1 blockade generated anti-myeloma T cell reactivity capable of eliminating established disease. We hypothesized that blocking a combination of checkpoint receptors in the context of low-dose, lymphodepleting whole body radiation would boost anti-tumor immunity. METHODS: To test our central hypothesis, we utilized a 5T33 murine multiple myeloma model. Myeloma-bearing mice were treated with a low dose of whole body irradiation and combinations of blocking antibodies to PD-L1, LAG-3, TIM-3, CD48 (the ligand for 2B4) and CTLA4. RESULTS: Temporal phenotypic analysis of bone marrow from myeloma-bearing mice demonstrated that elevated percentages of PD-1, 2B4, LAG-3 and TIM-3 proteins were expressed on T cells. When PD-L1 blockade was combined with blocking antibodies to LAG-3, TIM-3 or CTLA4, synergistic or additive increases in survival were observed (survival rates improved from ~30% to >80%). The increased survival rates correlated with increased frequencies of tumor-reactive CD8 and CD4 T cells. When stimulated in vitro with myeloma cells, CD8 T cells from treated mice produced elevated levels proinflammatory cytokines. Cytokines were spontaneously released from CD4 T cells isolated from mice treated with PD-L1 plus CTLA4 blocking antibodies. CONCLUSIONS: These data indicate that blocking PD-1/PD-L1 interactions in conjunction with other immune checkpoint proteins provides synergistic anti-tumor efficacy following lymphodepletive doses of whole body irradiation. This strategy is a promising combination strategy for myeloma and other hematologic malignancies.

17.
PLoS One ; 8(12): e80933, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24324647

RESUMO

Brain metastasis is a defining component of tumor pathophysiology, and the underlying mechanisms responsible for this phenomenon are not well understood. Current dogma is that tumor cells stimulate and activate astrocytes, and this mutual relationship is critical for tumor cell sustenance in the brain. Here, we provide evidence that primary rat neonatal and adult astrocytes secrete factors that proactively induced human lung and breast tumor cell invasion and metastasis capabilities. Among which, tumor invasion factors namely matrix metalloprotease-2 (MMP-2) and MMP-9 were partly responsible for the astrocyte media-induced tumor cell invasion. Inhibiting MMPs reduced the ability of tumor cell to migrate and invade in vitro. Further, injection of astrocyte media-conditioned breast cancer cells in mice showed increased invasive activity to the brain and other distant sites. More importantly, blocking the preconditioned tumor cells with broad spectrum MMP inhibitor decreased the invasion and metastasis of the tumor cells, in particular to the brain in vivo. Collectively, our data implicate astrocyte-derived MMP-2 and MMP-9 as critical players that facilitate tumor cell migration and invasion leading to brain metastasis.


Assuntos
Astrócitos/patologia , Fatores Biológicos/farmacologia , Neoplasias da Mama/patologia , Neoplasias Pulmonares/patologia , Metaloproteinase 2 da Matriz/farmacologia , Metaloproteinase 9 da Matriz/farmacologia , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Fatores Biológicos/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/química , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Transplante de Neoplasias , Cultura Primária de Células , Inibidores de Proteases/farmacologia , Ratos , Ratos Sprague-Dawley , Células Tumorais Cultivadas
18.
J Immunol ; 190(11): 5620-8, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23616570

RESUMO

Early phase clinical trials targeting the programmed death receptor-1/ligand-1 (PD-1/PD-L1) pathway to overcome tumor-mediated immunosuppression have reported promising results for a variety of cancers. This pathway appears to play an important role in the failure of immune reactivity to malignant plasma cells in multiple myeloma patients, as the tumor cells express relatively high levels of PD-L1, and T cells show increased PD-1 expression. In the current study, we demonstrate that PD-1/PD-L1 blockade with a PD-L1-specific Ab elicits rejection of a murine myeloma when combined with lymphodepleting irradiation. This particular combined approach by itself has not previously been shown to be efficacious in other tumor models. The antitumor effect of lymphodepletion/anti-PD-L1 therapy was most robust when tumor Ag-experienced T cells were present either through cell transfer or survival after nonmyeloablative irradiation. In vivo depletion of CD4 or CD8 T cells completely eliminated antitumor efficacy of the lymphodepletion/anti-PD-L1 therapy, indicating that both T cell subsets are necessary for tumor rejection. Elimination of myeloma by T cells occurs relatively quickly as tumor cells in the bone marrow were nearly nondetectable by 5 d after the first anti-PD-L1 treatment, suggesting that antimyeloma reactivity is primarily mediated by preactivated T cells, rather than newly generated myeloma-reactive T cells. Anti-PD-L1 plus lymphodepletion failed to improve survival in two solid tumor models, but demonstrated significant efficacy in two hematologic malignancy models. In summary, our results support the clinical testing of lymphodepletion and PD-1/PD-L1 blockade as a novel approach for improving the survival of patients with multiple myeloma.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Depleção Linfocítica , Mieloma Múltiplo/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Anticorpos Monoclonais/administração & dosagem , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Expressão Gênica , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/mortalidade , Irradiação Corporal Total
19.
Cancer Microenviron ; 6(1): 79-89, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22237886

RESUMO

Tumors are composed of heterogeneous populations of cells including tumor-initiating cells (TICs) and metastatic precursors. While the origin of these cells is unknown, there is evidence that tumor cells can transdifferentiate from an epithelial to a mesenchymal phenotype, a property referred to as epithelial-to-mesenchymal transition (EMT). This cellular plasticity may explain the heterogeneous nature of tumors and differences in the tumorigenic and invasive properties of cells. Understanding the origin of these cells and the contribution of external factors that influence the acquisition of cellular properties is critical for the development of therapeutics to eradicate cancer. In this study, we show that primary murine tumor cells harvested from FVB/N Tg (MMTV/Neu) spontaneous mammary tumors possess differentiation plasticity and can be enriched to be epithelial or mesenchymal-like using selected culture media conditions, and we show evidence of EMT in a clonal population of primary epithelial tumor cells when cultured in fibroblast growth factor-1 (FGF-1) or transforming growth factor-ß (TGF-ß). We also determined that in contrast to the identification of mesenchymal-like tumor cells as TICs in orthotopic xenograph models of tumorigenicity, epithelial-enriched murine mammary tumor cells were more tumorigenic as compared to mesenchymal-enriched cells when transplanted back subcutaneously into syngeneic immune competent mice. Together, these data suggest that EMT plasticity can be induced in primary murine mammary tumor cells, and that tumorigenicity of epithelial or mesenchymal-like cells may be influenced by factors such as the site of tumor inoculation or the immune state of the host (xenogenic immune compromised versus syngeneic immune competent).

20.
J Immunother ; 36(1): 41-51, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23211619

RESUMO

When tumor vaccines are administered as cancer immunotherapy, cellular interactions at the vaccine site are crucial to the generation of antitumor immunity. Examining interactions at the vaccine site could provide important insights to the success or failure of vaccination. Our laboratory previously showed that while administration of a cell-based vaccine to tumor-free mice leads to productive antineuroblastoma immunity, vaccination of tumor-bearing mice does not. The goal of this study was to examine immune effectors at the vaccine site to identify mechanisms responsible for the generation of ineffective antitumor immunity in tumor-bearing mice. The results of this study show that vaccine sites of tumor-bearing mice contained significantly fewer T cells than vaccine sites of tumor-free mice. Similar migration and proliferation of T cells was observed in the vaccine sites of tumor-bearing and tumor-free mice, but T cells in the sites of tumor-bearing mice were more apoptotic. T cells at the vaccine sites of both tumor-free and tumor-bearing mice had an effector-memory phenotype and expressed activation markers. Despite the activated phenotype, T cells from tumor-bearing mice elicited defective antitumor immune responses. Although T cells from vaccine sites of tumor-bearing mice were capable of producing inflammatory cytokines, the T cells from tumor-bearing mice produced lower levels of cytokines compared with T cells from the tumor-free mice. Remarkably, this defect seems to be systemic, affecting distal T cells in tumor-bearing mice. This study demonstrates that the defective vaccine-induced immune response to neuroblastoma in tumor-bearing hosts originates as a result of tumor burden, resulting in poor antitumor immunity.


Assuntos
Vacinas Anticâncer/imunologia , Neuroblastoma/imunologia , Linfócitos T/imunologia , Animais , Apoptose , Linhagem Celular Tumoral , Citocinas/imunologia , Masculino , Camundongos , Transplante de Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA