Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 11: 766298, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900714

RESUMO

Oncoprotein expression is controlled at the level of mRNA translation and is regulated by the eukaryotic translation initiation factor 4F (eIF4F) complex. eIF4A, a component of eIF4F, catalyzes the unwinding of secondary structure in the 5'-untranslated region (5'-UTR) of mRNA to facilitate ribosome scanning and translation initiation. Zotatifin (eFT226) is a selective eIF4A inhibitor that increases the affinity between eIF4A and specific polypurine sequence motifs and has been reported to inhibit translation of driver oncogenes in models of lymphoma. Here we report the identification of zotatifin binding motifs in the 5'-UTRs of HER2 and FGFR1/2 Receptor Tyrosine Kinases (RTKs). Dysregulation of HER2 or FGFR1/2 in human cancers leads to activation of the PI3K/AKT and RAS/ERK signaling pathways, thus enhancing eIF4A activity and promoting the translation of select oncogenes that are required for tumor cell growth and survival. In solid tumor models driven by alterations in HER2 or FGFR1/2, downregulation of oncoprotein expression by zotatifin induces sustained pathway-dependent anti-tumor activity resulting in potent inhibition of cell proliferation, induction of apoptosis, and significant in vivo tumor growth inhibition or regression. Sensitivity of RTK-driven tumor models to zotatifin correlated with high basal levels of mTOR activity and elevated translational capacity highlighting the unique circuitry generated by the RTK-driven signaling pathway. This dependency identifies the potential for rational combination strategies aimed at vertical inhibition of the PI3K/AKT/eIF4F pathway. Combination of zotatifin with PI3K or AKT inhibitors was beneficial across RTK-driven cancer models by blocking RTK-driven resistance mechanisms demonstrating the clinical potential of these combination strategies.

2.
Mol Biol Cell ; 32(12): 1193-1201, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33852350

RESUMO

Centromeres are epigenetically defined by the centromere-specific histone H3 variant CENP-A. Specialized loading machinery, including the histone chaperone HJURP/Scm3, participates in CENP-A nucleosome assembly. However, Scm3/HJURP is missing from multiple lineages, including nematodes, with CENP-A-dependent centromeres. Here, we show that the extended N-terminal tail of Caenorhabditis elegans CENP-A contains a predicted structured region that is essential for centromeric chromatin assembly; removal of this region prevents CENP-A loading, resulting in failure of kinetochore assembly and defective chromosome condensation. By contrast, the N-tail mutant CENP-A localizes normally in the presence of endogenous CENP-A. The portion of the N-tail containing the predicted structured region binds to KNL-2, a conserved SANTA domain and Myb domain-containing protein (referred to as M18BP1 in vertebrates) specifically involved in CENP-A chromatin assembly. This direct interaction is conserved in the related nematode Caenorhabditis briggsae, despite divergence of the N-tail and KNL-2 primary sequences. Thus, the extended N-tail of CENP-A is essential for CENP-A chromatin assembly in C. elegans and partially substitutes for the function of Scm3/HJURP, in that it mediates a direct interaction between CENP-A and KNL-2. These results highlight an evolutionary variation on centromeric chromatin assembly in the absence of a dedicated CENP-A-specific chaperone/targeting factor of the Scm3/HJURP family.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteína Centromérica A/metabolismo , Centrômero/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Caenorhabditis elegans/genética , Proteína Centromérica A/genética , Ligação Proteica , Conformação Proteica , Domínios Proteicos
3.
Mol Cancer Ther ; 20(1): 26-36, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33037136

RESUMO

The PI3K/AKT/mTOR pathway is often activated in lymphoma through alterations in PI3K, PTEN, and B-cell receptor signaling, leading to dysregulation of eIF4A (through its regulators, eIF4B, eIF4G, and PDCD4) and the eIF4F complex. Activation of eIF4F has a direct role in tumorigenesis due to increased synthesis of oncogenes that are dependent on enhanced eIF4A RNA helicase activity for translation. eFT226, which inhibits translation of specific mRNAs by promoting eIF4A1 binding to 5'-untranslated regions (UTR) containing polypurine and/or G-quadruplex recognition motifs, shows potent antiproliferative activity and significant in vivo efficacy against a panel of diffuse large B-cell lymphoma (DLBCL), and Burkitt lymphoma models with ≤1 mg/kg/week intravenous administration. Evaluation of predictive markers of sensitivity or resistance has shown that activation of eIF4A, mediated by mTOR signaling, correlated with eFT226 sensitivity in in vivo xenograft models. Mutation of PTEN is associated with reduced apoptosis in vitro and diminished efficacy in vivo in response to eFT226. In models evaluated with PTEN loss, AKT was stimulated without a corresponding increase in mTOR activation. AKT activation leads to the degradation of PDCD4, which can alter eIF4F complex formation. The association of eFT226 activity with PTEN/PI3K/mTOR pathway regulation of mRNA translation provides a means to identify patient subsets during clinical development.


Assuntos
Fator de Iniciação 4A em Eucariotos/antagonistas & inibidores , Linfoma de Células B/genética , Linfoma de Células B/patologia , Oncogenes , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fator de Iniciação 4A em Eucariotos/metabolismo , Feminino , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , PTEN Fosfo-Hidrolase/metabolismo , RNA Mensageiro/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Vis Exp ; (152)2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31736498

RESUMO

C. elegans is the premier system for the systematic analysis of cell fate specification and morphogenetic events during embryonic development. One challenge is that embryogenesis dynamically unfolds over a period of about 13 h; this half day-long timescale has constrained the scope of experiments by limiting the number of embryos that can be imaged. Here, we describe a semi-high-throughput protocol that allows for the simultaneous 3D time-lapse imaging of development in 80-100 embryos at moderate time resolution, from up to 14 different conditions, in a single overnight run. The protocol is straightforward and can be implemented by any laboratory with access to a microscope with point visiting capacity. The utility of this protocol is demonstrated by using it to image two custom-built strains expressing fluorescent markers optimized to visualize key aspects of germ-layer specification and morphogenesis. To analyze the data, a custom program that crops individual embryos out of a broader field of view in all channels, z-steps, and timepoints and saves the sequences for each embryo into a separate tiff stack was built. The program, which includes a user-friendly graphical user interface (GUI), streamlines data processing by isolating, pre-processing, and uniformly orienting individual embryos in preparation for visualization or automated analysis. Also supplied is an ImageJ macro that compiles individual embryo data into a multi-panel file that displays maximum intensity fluorescence projection and brightfield images for each embryo at each time point. The protocols and tools described herein were validated by using them to characterize embryonic development following knock-down of 40 previously described developmental genes; this analysis visualized previously annotated developmental phenotypes and revealed new ones. In summary, this work details a semi-high-throughput imaging method coupled with a cropping program and ImageJ visualization tool that, when combined with strains expressing informative fluorescent markers, greatly accelerates experiments to analyze embryonic development.


Assuntos
Caenorhabditis elegans/embriologia , Visualização de Dados , Embrião não Mamífero/citologia , Desenvolvimento Embrionário , Ensaios de Triagem em Larga Escala/métodos , Interpretação de Imagem Assistida por Computador/métodos , Morfogênese , Animais , Caenorhabditis elegans/fisiologia
5.
J Cell Biol ; 218(11): 3795-3811, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31541016

RESUMO

Fam20C is a secreted protein kinase mutated in Raine syndrome, a human skeletal disorder. In vertebrates, bone and enamel proteins are major Fam20C substrates. However, Fam20 kinases are conserved in invertebrates lacking bone and enamel, suggesting other ancestral functions. We show that FAMK-1, the Caenorhabditis elegans Fam20C orthologue, contributes to fertility, embryogenesis, and development. These functions are not fulfilled when FAMK-1 is retained in the early secretory pathway. During embryogenesis, FAMK-1 maintains intercellular partitions and prevents multinucleation; notably, temperature elevation or lowering cortical stiffness reduces requirement for FAMK-1 in these contexts. FAMK-1 is expressed in multiple adult tissues that undergo repeated mechanical strain, and selective expression in the spermatheca restores fertility. Informatic, biochemical, and functional analysis implicate lectins as FAMK-1 substrates. These findings suggest that FAMK-1 phosphorylation of substrates, including lectins, in the late secretory pathway is important in embryonic and tissue contexts where cells are subjected to mechanical strain.


Assuntos
Caenorhabditis elegans/enzimologia , Caseína Quinase I/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Caseína Quinase I/genética , Células HEK293 , Humanos
6.
Dev Cell ; 48(6): 864-872.e7, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30827898

RESUMO

Dynamic coupling of microtubule ends to kinetochores, built on the centromeres of chromosomes, directs chromosome segregation during cell division. Here, we report that the evolutionarily ancient kinetochore-microtubule coupling machine, the KMN (Knl1/Mis12/Ndc80-complex) network, plays a critical role in neuronal morphogenesis. We show that the KMN network concentrates in microtubule-rich dendrites of developing sensory neurons that collectively extend in a multicellular morphogenetic event that occurs during C. elegans embryogenesis. Post-mitotic degradation of KMN components in sensory neurons disrupts dendritic extension, leading to patterning and functional defects in the sensory nervous system. Structure-guided mutations revealed that the molecular interface that couples kinetochores to spindle microtubules also functions in neuronal development. These results identify a cell-division-independent function for the chromosome-segregation machinery and define a microtubule-coupling-dependent event in sensory nervous system morphogenesis.


Assuntos
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Morfogênese , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/metabolismo , Dendritos/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Mitose
7.
Development ; 146(7)2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30890570

RESUMO

The Caenorhabditis elegans embryo is an important model for analyzing mechanisms of cell fate specification and tissue morphogenesis. Sophisticated lineage-tracing approaches for analyzing embryogenesis have been developed but are labor intensive and do not naturally integrate morphogenetic readouts. To enable the rapid classification of developmental phenotypes, we developed a high-content method that employs two custom strains: a Germ Layer strain that expresses nuclear markers in the ectoderm, mesoderm and endoderm/pharynx; and a Morphogenesis strain that expresses markers labeling epidermal cell junctions and the neuronal cell surface. We describe a procedure that allows simultaneous live imaging of development in 80-100 embryos and provide a custom program that generates cropped, oriented image stacks of individual embryos to facilitate analysis. We demonstrate the utility of our method by perturbing 40 previously characterized developmental genes in variants of the two strains containing RNAi-sensitizing mutations. The resulting datasets yielded distinct, reproducible signature phenotypes for a broad spectrum of genes that are involved in cell fate specification and morphogenesis. In addition, our analysis provides new in vivo evidence for MBK-2 function in mesoderm fate specification and LET-381 function in elongation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Endoderma/embriologia , Endoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Mesoderma/embriologia , Mesoderma/metabolismo
8.
Cell ; 165(2): 396-409, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27020753

RESUMO

Multiple division cycles without growth are a characteristic feature of early embryogenesis. The female germline loads proteins and RNAs into oocytes to support these divisions, which lack many quality control mechanisms operating in somatic cells undergoing growth. Here, we describe a small RNA-Argonaute pathway that ensures early embryonic divisions in C. elegans by employing catalytic slicing activity to broadly tune, instead of silence, germline gene expression. Misregulation of one target, a kinesin-13 microtubule depolymerase, underlies a major phenotype associated with pathway loss. Tuning of target transcript levels is guided by the density of homologous small RNAs, whose generation must ultimately be related to target sequence. Thus, the tuning action of a small RNA-catalytic Argonaute pathway generates oocytes capable of supporting embryogenesis. We speculate that the specialized nature of germline chromatin led to the emergence of small RNA-catalytic Argonaute pathways in the female germline as a post-transcriptional control layer to optimize oocyte composition.


Assuntos
Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Embrião não Mamífero/metabolismo , Redes e Vias Metabólicas , Oócitos/metabolismo , Animais , Proteínas Argonautas/metabolismo , Sequência de Bases , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/metabolismo , Divisão Celular , Embrião não Mamífero/citologia , Desenvolvimento Embrionário , Feminino , Cinesinas/metabolismo , Microtúbulos/metabolismo , Dados de Sequência Molecular , Processamento Pós-Transcricional do RNA
9.
J Cell Sci ; 126(Pt 18): 4147-59, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23868978

RESUMO

In this study, we examined the anaphase functions of the S. cerevisiae kinesin-5 homolog Kip1. We show that Kip1 is attached to the mitotic spindle midzone during late anaphase. This attachment is essential to stabilize interpolar microtubule (iMTs) plus-ends. By detailed examination of iMT dynamics we show that at the end of anaphase, iMTs depolymerize in two stages: during the first stage, one pair of anti-parallel iMTs depolymerizes at a velocity of 7.7 µm/minute; during the second stage, ∼90 seconds later, the remaining pair of iMTs depolymerizes at a slower velocity of 5.4 µm/minute. We show that upon the second depolymerization stage, which coincides with spindle breakdown, Kip1 follows the plus-ends of depolymerizing iMTs and translocates toward the spindle poles. This movement is independent of mitotic microtubule motor proteins or the major plus-end binding or tracking proteins. In addition, we show that Kip1 processively tracks the plus-ends of growing and shrinking MTs, both inside and outside the nucleus. The plus-end tracking activity of Kip1 requires its catalytic motor function, because a rigor mutant of Kip1 does not exhibit this activity. Finally, we show that Kip1 is a bi-directional motor: in vitro, at high ionic strength conditions, single Kip1 molecules move processively in the minus-end direction of the MTs, whereas in a multi-motor gliding assay, Kip1 is plus-end directed. The bi-directionality and plus-end tracking activity of Kip1, properties revealed here for the first time, allow Kip1 to perform its multiple functions in mitotic spindle dynamics and to partition the 2-micron plasmid.


Assuntos
Cinesinas/genética , Microtúbulos/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cinesinas/metabolismo , Proteínas dos Microtúbulos/genética , Proteínas dos Microtúbulos/metabolismo , Microtúbulos/genética , Mitose , Antígeno Nuclear de Célula em Proliferação/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Bioarchitecture ; 2(2): 70-74, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22754632

RESUMO

Kinesin-5 mechanoenzymes drive mitotic spindle dynamics as slow, processive microtubule (MT)-plus-end directed motors. Surprisingly, the Saccharomyces cerevisiae kinesin-5 Cin8 was recently found to be bi-directional: it can move processively in both directions on MTs. Two hypotheses have been suggested for the mechanism of the directionality switch: (1) single molecules of Cin8 are intrinsically minus-end directed, but mechanical coupling between two or more motors triggers the switch; (2) a single motor can switch direction, and "cargo binding" i.e., binding between two MTs triggers the switch to plus-end motility. Single-molecule fluorescence data we published recently, and augment here, favor hypothesis (2). In low-ionic-strength conditions, single molecules of Cin8 move in both minus- and plus-end directions. Fluorescence photo bleaching data rule out aggregation of Cin8 while they move in the plus and in the minus direction. The evidence thus points toward cargo regulation of directionality, which is likely to be related to cargo regulation in other kinesins. The molecular mechanisms of this regulation, however, remain to be elucidated.

11.
EMBO J ; 30(24): 4942-54, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22101328

RESUMO

Kinesin-5 motors fulfil essential roles in mitotic spindle morphogenesis and dynamics as slow, processive microtubule (MT) plus-end directed motors. The Saccharomyces cerevisiae kinesin-5 Cin8 was found, surprisingly, to switch directionality. Here, we have examined directionality using single-molecule fluorescence motility assays and live-cell microscopy. On spindles, Cin8 motors mostly moved slowly (∼25 nm/s) towards the midzone, but occasionally also faster (∼55 nm/s) towards the spindle poles. In vitro, individual Cin8 motors could be switched by ionic conditions from rapid (380 nm/s) and processive minus-end to slow plus-end motion on single MTs. At high ionic strength, Cin8 motors rapidly alternated directionalities between antiparallel MTs, while driving steady plus-end relative sliding. Between parallel MTs, plus-end motion was only occasionally observed. Deletion of the uniquely large insert in loop 8 of Cin8 induced bias towards minus-end motility and affected the ionic strength-dependent directional switching of Cin8 in vitro. The deletion mutant cells exhibited reduced midzone-directed motility and efficiency to support spindle elongation, indicating the importance of directionality control for the anaphase function of Cin8.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Deleção de Genes , Cinesinas/química , Cinesinas/genética , Microscopia de Fluorescência , Microtúbulos/ultraestrutura , Movimento , Concentração Osmolar , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura
12.
J Cell Sci ; 124(Pt 6): 873-8, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21378308

RESUMO

The kinesin-5 Saccharomyces cerevisiae homologue Cin8 is shown here to be differentially phosphorylated during late anaphase at Cdk1-specific sites located in its motor domain. Wild-type Cin8 binds to the early-anaphase spindles and detaches from the spindles at late anaphase, whereas the phosphorylation-deficient Cin8-3A mutant protein remains attached to a larger region of the spindle and spindle poles for prolonged periods. This localization of Cin8-3A causes faster spindle elongation and longer anaphase spindles, which have aberrant morphology. By contrast, the phospho-mimic Cin8-3D mutant exhibits reduced binding to the spindles. In the absence of the kinesin-5 homologue Kip1, cells expressing Cin8-3D exhibit spindle assembly defects and are not viable at 37°C as a result of spindle collapse. We propose that dephosphorylation of Cin8 promotes its binding to the spindle microtubules before the onset of anaphase. In mid to late anaphase, phosphorylation of Cin8 causes its detachment from the spindles, which reduces the spindle elongation rate and aids in maintaining spindle morphology.


Assuntos
Anáfase , Cinesinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Cinesinas/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Fosforilação , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fuso Acromático/genética
13.
EMBO Rep ; 10(4): 387-93, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19270715

RESUMO

To study the dynamics of interpolar microtubules (iMTs) in Saccharomyces cerevisiae cells, we photobleached a considerable portion of the middle region of anaphase spindles in cells expressing tubulin-green fluorescent protein (GFP) and followed fluorescence recovery at the iMT plus-ends. We found that during anaphase, iMTs show phases of fast growth and shrinkage that are restricted to the iMT plus-ends. Our data indicate that iMT plus-end dynamics are regulated during mitosis, as fluorescence recovery was faster in intermediate anaphase (30 s) compared with long (100 s) and pre-anaphase (80 s) spindles. We also observed that deletion of Cin8, a microtubule-crosslinking kinesin-5 motor protein, reduced the recovery rate in anaphase spindles, indicating that Cin8 contributes to the destabilization of iMT plus-ends. Finally, we show that in cells lacking the midzone organizing protein Ase1, iMTs are highly dynamic and are exchangeable throughout most of their length, indicating that midzone organization is essential for restricting iMT dynamics.


Assuntos
Microtúbulos/metabolismo , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cinesinas , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Tubulina (Proteína)/metabolismo
14.
J Cell Sci ; 121(Pt 15): 2529-39, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18628309

RESUMO

We examined spindle elongation in anaphase in Saccharomyces cerevisiae cells mutated for the kinesin-5 motor proteins Cin8 and Kip1. Cells were deleted for KIP1 and/or expressed one of two motor-domain Cin8 mutants (Cin8-F467A or Cin8-R196K, which differ in their ability to bind microtubules in vitro, with Cin8-F467A having the weakest ability). We found that, in kinesin-5-mutated cells, predominantly in kip1 Delta cin8-F467A cells, anaphase spindle elongation was frequently interrupted after the fast phase, resulting in a mid-anaphase pause. Expression of kinesin-5 mutants also caused an asymmetric midzone location and enlarged midzone size, suggesting that proper organization of the midzone is required for continuous spindle elongation. We also examined the effects of components of the FEAR pathway, which is involved in the early-anaphase activation of Cdc14 regulatory phosphatase, on anaphase spindle elongation in kip1 Delta cin8-F467A cells. Deletion of SLK19, but not SPO12, eliminated the mid-anaphase pause, caused premature anaphase onset and defects in DNA division during anaphase, and reduced viability in these cells. Finally, overriding of the pre-anaphase checkpoint by overexpression of Cdc20 also eliminated the mid-anaphase pause and caused DNA deformation during anaphase in kip1 Delta cin8-F467A cells. We propose that transient activation of the pre-anaphase checkpoint in kinesin-5-mutated cells induces a Slk19-dependent mid-anaphase pause, which might be important for proper DNA segregation.


Assuntos
Anáfase/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Anáfase/fisiologia , Células Cultivadas , Cinesinas , Modelos Biológicos , Proteínas Motores Moleculares , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...