Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Dev ; 36(17-18): 1031-1042, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328355

RESUMO

Targeted protein degradation (TPD) has risen as a promising therapeutic modality. Leveraging the catalytic nature of the ubiquitin-proteasome enzymatic machinery, TPD exhibits higher potency to eliminate disease-causing target proteins such as oncogenic transcription factors that may otherwise be difficult to abrogate by conventional inhibitors. However, there are challenges that remain. Currently, nearly all degraders engage CUL4CRBN or CUL2VHL as the E3 ligase for target ubiquitination. While their immediate efficacies are evident, the narrowed E3 ligase options make TPD vulnerable to potential drug resistance. In addition, E3 ligases show differential tissue expression and have intrinsic limitations in accessing varying types of disease-relevant targets. As the success of TPD is closely associated with the ability of E3 ligases to efficiently polyubiquitinate the target of interest, the long-term outlook of TPD drug development will depend on whether E3 ligases such as CUL4CRBN and CUL2VHL are accessible to the targets of interest. To overcome these potential caveats, a broad collection of actionable E3 ligases is required. Here, we designed a macrocyclic degrader engaging CUL3KLHL20 for targeting BET proteins and validated CUL3KLHL20 as an E3 ligase system suitable for TPD. This work thus contributes to the expansion of usable E3 ligases for potential drug development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Proteólise , Ligantes , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ubiquitinação
2.
Brain ; 143(7): 2119-2138, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32572454

RESUMO

Syntaxin 1B (STX1B) is a core component of the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex that is critical for the exocytosis of synaptic vesicles in the presynapse. SNARE-mediated vesicle fusion is assisted by Munc18-1, which recruits STX1B in the auto-inhibited conformation, while Munc13 catalyses the fast and efficient pairing of helices during SNARE complex formation. Mutations within the STX1B gene are associated with epilepsy. Here we analysed three STX1B mutations by biochemical and electrophysiological means. These three paradigmatic mutations cause epilepsy syndromes of different severity, from benign fever-associated seizures in childhood to severe epileptic encephalopathies. An insertion/deletion (K45/RMCIE, L46M) mutation (STX1BInDel), causing mild epilepsy and located in the early helical Habc domain, leads to an unfolded protein unable to sustain neurotransmission. STX1BG226R, causing epileptic encephalopathies, strongly compromises the interaction with Munc18-1 and reduces expression of both proteins, the size of the readily releasable pool of vesicles, and Ca2+-triggered neurotransmitter release when expressed in STX1-null neurons. The mutation STX1BV216E, also causing epileptic encephalopathies, only slightly diminishes Munc18-1 and Munc13 interactions, but leads to enhanced fusogenicity and increased vesicular release probability, also in STX1-null neurons. Even though the synaptic output remained unchanged in excitatory hippocampal STX1B+/- neurons exogenously expressing STX1B mutants, the manifestation of clear and distinct molecular disease mechanisms by these mutants suggest that certain forms of epilepsies can be conceptualized by assigning mutations to structurally sensitive regions of the STX1B-Munc18-1 interface, translating into distinct neurophysiological phenotypes.


Assuntos
Epilepsia/genética , Epilepsia/metabolismo , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Sintaxina 1/genética , Animais , Genótipo , Camundongos , Mutação , Fenótipo
3.
Cell Rep ; 30(2): 409-420.e6, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31940485

RESUMO

The rapid replenishment of release-ready synaptic vesicles (SVs) at a limiting number of presynaptic release sites is required to sustain high-frequency neurotransmission in CNS neurons. Failure to clear release sites from previously exocytosed material has been shown to impair vesicle replenishment and, therefore, fast neurotransmission. The identity of this material and the machinery that removes it from release sites have remained enigmatic. Here we show that the endocytic scaffold protein intersectin 1 clears release sites by direct SH3 domain-mediated association with a non-canonical proline-rich segment of synaptobrevin assembled into the SNARE complex for neuroexocytosis. Acute structure-based or sustained genetic interference with SNARE complex recognition by intersectin 1 causes a rapid stimulation frequency-dependent depression of neurotransmission due to impaired replenishment of release-ready SVs. These findings identify a key molecular mechanism that underlies exo-endocytic coupling during fast neurotransmitter release at central synapses.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas SNARE/metabolismo , Transmissão Sináptica/genética , Vesículas Sinápticas/metabolismo , Humanos
4.
Structure ; 27(6): 977-987.e5, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31031201

RESUMO

The scaffolding protein intersectin 1 plays important roles in clathrin-mediated endocytosis and in the replenishment of release-ready synaptic vesicles (SV). Two splice variants of intersectin's SH3A domain are expressed in the brain, and association of the neuron-specific variant with synapsin I has been shown to enable sustained neurotransmission and to be regulated by an adjacent C-terminal motif. Here, we demonstrate that the ubiquitously expressed short SH3A variant of intersectin 1 interacts with an N-terminal intramolecular sequence that operates synergistically with the C-terminal motif. NMR spectroscopic investigations show that the five-amino acid insertion into the ß strand 2 of the neuronal SH3A variant introduces conformational plasticity incompatible with binding of the N-terminal sequence. The difference in the autoregulatory mechanism of the domain's variants differentially affects its synaptic binding partners, thereby establishing alternative splicing in conjunction with autoinhibitory motif variation as a mechanism to regulate protein interaction networks.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Processamento Alternativo , Endocitose/genética , Éxons/genética , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Regulação da Expressão Gênica , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , Ligação Proteica , Conformação Proteica , Mapas de Interação de Proteínas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transmissão Sináptica , Domínios de Homologia de src
5.
Dev Cell ; 43(4): 522-529.e4, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-29161595

RESUMO

Clathrin-mediated endocytosis occurs by bending and remodeling of the membrane underneath the coat. Bin-amphiphysin-rvs (BAR) domain proteins are crucial for endocytic membrane remodeling, but how their activity is spatiotemporally controlled is largely unknown. We demonstrate that the membrane remodeling activity of sorting nexin 9 (SNX9), a late-acting endocytic PX-BAR domain protein required for constriction of U-shaped endocytic intermediates, is controlled by an allosteric structural switch involving coincident detection of the clathrin adaptor AP2 and phosphatidylinositol-3,4-bisphosphate (PI(3,4)P2) at endocytic sites. Structural, biochemical, and cell biological data show that SNX9 is autoinhibited in solution. Binding to PI(3,4)P2 via its PX-BAR domain, and concomitant association with AP2 via sequences in the linker region, releases SNX9 autoinhibitory contacts to enable membrane constriction. Our results reveal a mechanism for restricting the latent membrane remodeling activity of BAR domain proteins to allow spatiotemporal coupling of membrane constriction to the progression of the endocytic pathway.


Assuntos
Membrana Celular/metabolismo , Endocitose/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sítio Alostérico , Animais , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , Ligação Proteica/fisiologia , Nexinas de Classificação/metabolismo , Proteínas de Transporte Vesicular/química
6.
Proc Natl Acad Sci U S A ; 114(45): 12057-12062, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078407

RESUMO

Neurotransmission is mediated by the exocytic release of neurotransmitters from readily releasable synaptic vesicles (SVs) at the active zone. To sustain neurotransmission during periods of elevated activity, release-ready vesicles need to be replenished from the reserve pool of SVs. The SV-associated synapsins are crucial for maintaining this reserve pool and regulate the mobilization of reserve pool SVs. How replenishment of release-ready SVs from the reserve pool is regulated and which other factors cooperate with synapsins in this process is unknown. Here we identify the endocytic multidomain scaffold protein intersectin as an important regulator of SV replenishment at hippocampal synapses. We found that intersectin directly associates with synapsin I through its Src-homology 3 A domain, and this association is regulated by an intramolecular switch within intersectin 1. Deletion of intersectin 1/2 in mice alters the presynaptic nanoscale distribution of synapsin I and causes defects in sustained neurotransmission due to defective SV replenishment. These phenotypes were rescued by wild-type intersectin 1 but not by a locked mutant of intersectin 1. Our data reveal intersectin as an autoinhibited scaffold that serves as a molecular linker between the synapsin-dependent reserve pool and the presynaptic endocytosis machinery.


Assuntos
Neurotransmissores/metabolismo , Sinapses/metabolismo , Sinapsinas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Endocitose/fisiologia , Exocitose/fisiologia , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiologia
7.
J Pept Sci ; 23(7-8): 631-635, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28185387

RESUMO

Sortase-mediated ligation is one of the most commonly used chemo-enzymatic techniques for the site-specific modification of proteins. We have established a new library of sortase mutants for directed evolution of sortase substrate selectivity. Phage display screens of this second-generation library yielded sortase mutants that ligate substrate proteins containing an APxTG or FPxTG recognition sequence instead of the canonical LPxTG sorting motif. These findings indicate that the second-generation sortase library is well suited for sortase engineering in order to increase the versatility of sortase-mediated ligation. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Engenharia de Proteínas/métodos , Aminoaciltransferases/genética , Proteínas de Bactérias/genética , Cisteína Endopeptidases/genética , Mutação/genética , Biblioteca de Peptídeos , Peptídeos/genética , Peptídeos/metabolismo , Especificidade por Substrato
8.
EMBO Rep ; 16(2): 232-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25520322

RESUMO

Neurotransmission involves the exo-endocytic cycling of synaptic vesicle (SV) membranes. Endocytic membrane retrieval and clathrin-mediated SV reformation require curvature-sensing and membrane-bending BAR domain proteins such as endophilin A. While their ability to sense and stabilize curved membranes facilitates membrane recruitment of BAR domain proteins, the precise mechanisms by which they are targeted to specific sites of SV recycling has remained unclear. Here, we demonstrate that the multi-domain scaffold intersectin 1 directly associates with endophilin A to facilitate vesicle uncoating at synapses. Knockout mice deficient in intersectin 1 accumulate clathrin-coated vesicles at synapses, a phenotype akin to loss of endophilin function. Intersectin 1/endophilin A1 complex formation is mediated by direct binding of the SH3B domain of intersectin to a non-canonical site on the SH3 domain of endophilin A1. Consistent with this, intersectin-binding defective mutant endophilin A1 fails to rescue clathrin accumulation at neuronal synapses derived from endophilin A1-3 triple knockout (TKO) mice. Our data support a model in which intersectin aids endophilin A recruitment to sites of clathrin-mediated SV recycling, thereby facilitating vesicle uncoating.


Assuntos
Vesículas Revestidas por Clatrina/metabolismo , Sinapses/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Células Cultivadas , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Knockout , Microscopia Confocal
9.
EMBO Rep ; 13(12): 1087-94, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23146885

RESUMO

Phosphatidylinositol (PI) 4-phosphate (PI(4)P) and its metabolizing enzymes serve important functions in cell signalling and membrane traffic. PI 4-kinase type IIα (PI4KIIα) regulates Wnt signalling, endosomal sorting of signalling receptors, and promotes adaptor protein recruitment to endosomes and the trans-Golgi network. Here we identify the E3 ubiquitin ligase Itch as binding partner and regulator of PI4KIIα function. Itch directly associates with and ubiquitinates PI4KIIα, and both proteins colocalize on endosomes containing Wnt-activated frizzled 4 (Fz4) receptor. Depletion of PI4KIIα or Itch regulates Wnt signalling with corresponding changes in Fz4 internalization and degradative sorting. These findings unravel a new molecular link between phosphoinositide-regulated endosomal membrane traffic, ubiquitin and the modulation of Wnt signalling.


Assuntos
Receptores Frizzled , Fosfotransferases (Aceptor do Grupo Álcool) , Ubiquitina-Proteína Ligases/metabolismo , Rede trans-Golgi/metabolismo , Animais , Endossomos/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Antígenos de Histocompatibilidade Menor , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Transporte Proteico , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Via de Sinalização Wnt
10.
J Am Chem Soc ; 133(44): 17536-9, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21978125

RESUMO

The ligation of two polypeptides in a chemoselective manner by the bacterial transpeptidase sortase A has become a versatile tool for protein engineering approaches. When sortase-mediated ligation is used for protein semisynthesis, up to four mutations resulting from the strict requirement of the LPxTG sorting motif are introduced into the target protein. Here we report the directed evolution of a mutant sortase A that possesses broad substrate selectivity. A phage-display screen of a mutant sortase library that was randomized in the substrate recognition loop was used to isolate this mutant. The altered substrate selectivity represents a gain-of-function that was exploited for the traceless semisynthesis of histone H3. Our report is a decisive step toward a platform of engineered sortases with distinct ligation properties that will conceivably allow for more versatile assemblies of modified proteins in biotechnological approaches.


Assuntos
Aminoaciltransferases/genética , Proteínas de Bactérias/genética , Cisteína Endopeptidases/genética , Evolução Molecular Direcionada/métodos , Staphylococcus aureus/enzimologia , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Mutação , Engenharia de Proteínas , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...