Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Evol Biol ; 20(1): 127, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32972368

RESUMO

BACKGROUND: Angiosperms employ an astonishing variety of visual and olfactory floral signals that are generally thought to evolve under natural selection. Those morphological and chemical traits can form highly correlated sets of traits. It is not always clear which of these are used by pollinators as primary targets of selection and which would be indirectly selected by being linked to those primary targets. Quantitative genetics tools for predicting multiple traits response to selection have been developed since long and have advanced our understanding of evolution of genetically correlated traits in various biological systems. We use these tools to predict the evolutionary trajectories of floral traits and understand the selection pressures acting on them. RESULTS: We used data from an artificial selection and a pollinator (bumblebee, hoverfly) evolution experiment with fast cycling Brassica rapa plants to predict evolutionary changes of 12 floral volatiles and 4 morphological floral traits in response to selection. Using the observed selection gradients and the genetic variance-covariance matrix (G-matrix) of the traits, we showed that the observed responses of most floral traits including volatiles were predicted in the right direction in both artificial- and bumblebee-selection experiment. Genetic covariance had a mix of constraining and facilitating effects on evolutionary responses. We further revealed that G-matrices also evolved in the selection processes. CONCLUSIONS: Overall, our integrative study shows that floral signals, especially volatiles, evolve under selection in a mostly predictable way, at least during short term evolution. Evolutionary constraints stemming from genetic covariance affected traits evolutionary trajectories and thus it is important to include genetic covariance for predicting the evolutionary changes of a comprehensive suite of traits. Other processes such as resource limitation and selfing also need to be considered for a better understanding of floral trait evolution.


Assuntos
Brassica rapa , Flores/genética , Polinização , Seleção Genética , Animais , Abelhas , Brassica rapa/genética , Dípteros , Fenótipo
2.
Evolution ; 72(12): 2653-2668, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30257033

RESUMO

Whereas specialized pollination is well recognized to cause floral adaptation, we know little about the evolutionary impact of generalized pollination. For example, it is largely unknown whether such pollination can lead to adaptive floral divergence and to what degree pollinators with different effectiveness determine evolutionary trajectories. Here, we investigated the evolutionary consequences of combined bumblebee- and hoverfly-pollination ("generalized" pollination) in comparison with those of each individual pollinator species (specialized pollination), using fast-cycling Brassica rapa plants during seven generations of experimental evolution. Bumblebees were twice as efficient as hoverflies in pollinating B. rapa flowers, but phenotypic selection and evolutionary change in plants with generalized pollination was different from both bumblebee- and hoverfly-pollinated plants for several traits. After seven generations evolution, plants with generalized pollination resembled bumblebee-pollinated plants in having little spontaneous selfing and tall size, but were more similar to hoverfly-pollinated plants in having low floral scent emission. This unique trait combination supports the idea of a generalized-pollination ecotype, coined neither by the most efficient pollinator, nor by an evolutionary average between the changes caused by each individual pollinator. For a better understanding of such "nonadditive evolution," future research should target interactions of pollinators and their effect on phenotypic selection.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Brassica rapa/genética , Flores/genética , Flores/fisiologia , Polinização/fisiologia , Animais , Abelhas/fisiologia , Comportamento Animal , Brassica rapa/fisiologia , Comportamento de Escolha , Dípteros/fisiologia
3.
Ecol Evol ; 7(15): 6023-6034, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28808562

RESUMO

Speciation is typically accompanied by the formation of isolation barriers between lineages. Commonly, reproductive barriers are separated into pre- and post-zygotic mechanisms that can evolve with different speed. In this study, we measured the strength of different reproductive barriers in two closely related, sympatric orchids of the Ophrys insectifera group, namely Ophrys insectifera and Ophrys aymoninii to infer possible mechanisms of speciation. We quantified pre- and post-pollination barriers through observation of pollen flow, by performing artificial inter- and intraspecific crosses and analyzing scent bouquets. Additionally, we investigated differences in mycorrhizal fungi as a potential extrinsic factor of post-zygotic isolation. Our results show that floral isolation mediated by the attraction of different pollinators acts apparently as the sole reproductive barrier between the two orchid species, with later-acting intrinsic barriers seemingly absent. Also, the two orchids share most of their fungal mycorrhizal partners in sympatry, suggesting little or no importance of mycorrhizal symbiosis in reproductive isolation. Key traits underlying floral isolation were two alkenes and wax ester, present predominantly in the floral scent of O. aymoninii. These compounds, when applied to flowers of O. insectifera, triggered attraction and a copulation attempt of the bee pollinator of O. aymoninii and thus led to the (partial) breakdown of floral isolation. Based on our results, we suggest that adaptation to different pollinators, mediated by floral scent, underlies species isolation in this plant group. Pollinator switches may be promoted by low pollination success of individuals in dense patches of plants, an assumption that we also confirmed in our study.

4.
Nat Commun ; 8: 14691, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28291771

RESUMO

Pollinator-driven diversification is thought to be a major source of floral variation in plants. Our knowledge of this process is, however, limited to indirect assessments of evolutionary changes. Here, we employ experimental evolution with fast cycling Brassica rapa plants to demonstrate adaptive evolution driven by different pollinators. Our study shows pollinator-driven divergent selection as well as divergent evolution in plant traits. Plants pollinated by bumblebees evolved taller size and more fragrant flowers with increased ultraviolet reflection. Bumblebees preferred bumblebee-pollinated plants over hoverfly-pollinated plants at the end of the experiment, showing that plants had adapted to the bumblebees' preferences. Plants with hoverfly pollination became shorter, had reduced emission of some floral volatiles, but increased fitness through augmented autonomous self-pollination. Our study demonstrates that changes in pollinator communities can have rapid consequences on the evolution of plant traits and mating system.


Assuntos
Abelhas , Evolução Biológica , Brassica rapa , Dípteros , Polinização , Animais , Flores , Odorantes , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...