Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(16): 162701, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37925687

RESUMO

The ^{12}C/^{13}C ratio is a significant indicator of nucleosynthesis and mixing processes during hydrogen burning in stars. Its value mainly depends on the relative rates of the ^{12}C(p,γ)^{13}N and ^{13}C(p,γ)^{14}N reactions. Both reactions have been studied at the Laboratory for Underground Nuclear Astrophysics (LUNA) in Italy down to the lowest energies to date (E_{c.m.}=60 keV) reaching for the first time the high energy tail of hydrogen burning in the shell of giant stars. Our cross sections, obtained with both prompt γ-ray detection and activation measurements, are the most precise to date with overall systematic uncertainties of 7%-8%. Compared with most of the literature, our results are systematically lower, by 25% for the ^{12}C(p,γ)^{13}N reaction and by 30% for ^{13}C(p,γ)^{14}N. We provide the most precise value up to now of 3.6±0.4 in the 20-140 MK range for the lowest possible ^{12}C/^{13}C ratio that can be produced during H burning in giant stars.

2.
Phys Rev Lett ; 127(15): 152701, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34677992

RESUMO

One of the main neutron sources for the astrophysical s process is the reaction ^{13}C(α,n)^{16}O, taking place in thermally pulsing asymptotic giant branch stars at temperatures around 90 MK. To model the nucleosynthesis during this process the reaction cross section needs to be known in the 150-230 keV energy window (Gamow peak). At these sub-Coulomb energies, cross section direct measurements are severely affected by the low event rate, making us rely on input from indirect methods and extrapolations from higher-energy direct data. This leads to an uncertainty in the cross section at the relevant energies too high to reliably constrain the nuclear physics input to s-process calculations. We present the results from a new deep-underground measurement of ^{13}C(α,n)^{16}O, covering the energy range 230-300 keV, with drastically reduced uncertainties over previous measurements and for the first time providing data directly inside the s-process Gamow peak. Selected stellar models have been computed to estimate the impact of our revised reaction rate. For stars of nearly solar composition, we find sizeable variations of some isotopes, whose production is influenced by the activation of close-by branching points that are sensitive to the neutron density, in particular, the two radioactive nuclei ^{60}Fe and ^{205}Pb, as well as ^{152}Gd.

3.
Nature ; 587(7833): 210-213, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177669

RESUMO

Light elements were produced in the first few minutes of the Universe through a sequence of nuclear reactions known as Big Bang nucleosynthesis (BBN)1,2. Among the light elements produced during BBN1,2, deuterium is an excellent indicator of cosmological parameters because its abundance is highly sensitive to the primordial baryon density and also depends on the number of neutrino species permeating the early Universe. Although astronomical observations of primordial deuterium abundance have reached percent accuracy3, theoretical predictions4-6 based on BBN are hampered by large uncertainties on the cross-section of the deuterium burning D(p,γ)3He reaction. Here we show that our improved cross-sections of this reaction lead to BBN estimates of the baryon density at the 1.6 percent level, in excellent agreement with a recent analysis of the cosmic microwave background7. Improved cross-section data were obtained by exploiting the negligible cosmic-ray background deep underground at the Laboratory for Underground Nuclear Astrophysics (LUNA) of the Laboratori Nazionali del Gran Sasso (Italy)8,9. We bombarded a high-purity deuterium gas target10 with an intense proton beam from the LUNA 400-kilovolt accelerator11 and detected the γ-rays from the nuclear reaction under study with a high-purity germanium detector. Our experimental results settle the most uncertain nuclear physics input to BBN calculations and substantially improve the reliability of using primordial abundances to probe the physics of the early Universe.

4.
Phys Rev Lett ; 121(17): 172701, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30411966

RESUMO

The ^{22}Ne(p,γ)^{23}Na reaction, part of the neon-sodium cycle of hydrogen burning, may explain the observed anticorrelation between sodium and oxygen abundances in globular cluster stars. Its rate is controlled by a number of low-energy resonances and a slowly varying nonresonant component. Three new resonances at E_{p}=156.2, 189.5, and 259.7 keV have recently been observed and confirmed. However, significant uncertainty on the reaction rate remains due to the nonresonant process and to two suggested resonances at E_{p}=71 and 105 keV. Here, new ^{22}Ne(p,γ)^{23}Na data with high statistics and low background are reported. Stringent upper limits of 6×10^{-11} and 7×10^{-11} eV (90% confidence level), respectively, are placed on the two suggested resonances. In addition, the off-resonant S factor has been measured at unprecedented low energy, constraining the contributions from a subthreshold resonance and the direct capture process. As a result, at a temperature of 0.1 GK the error bar of the ^{22}Ne(p,γ)^{23}Na rate is now reduced by 3 orders of magnitude.

6.
Phys Rev Lett ; 117(14): 142502, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27740778

RESUMO

The ^{17}O(p,α)^{14}N reaction plays a key role in various astrophysical scenarios, from asymptotic giant branch stars to classical novae. It affects the synthesis of rare isotopes such as ^{17}O and ^{18}F, which can provide constraints on astrophysical models. A new direct determination of the E_{R}=64.5 keV resonance strength performed at the Laboratory for Underground Nuclear Astrophysics (LUNA) accelerator has led to the most accurate value to date ωγ=10.0±1.4_{stat}±0.7_{syst} neV, thanks to a significant background reduction underground and generally improved experimental conditions. The (bare) proton partial width of the corresponding state at E_{x}=5672 keV in ^{18}F is Γ_{p}=35±5_{stat}±3_{syst} neV. This width is about a factor of 2 higher than previously estimated, thus leading to a factor of 2 increase in the ^{17}O(p, α)^{14}N reaction rate at astrophysical temperatures relevant to shell hydrogen burning in red giant and asymptotic giant branch stars. The new rate implies lower ^{17}O/^{16}O ratios, with important implications on the interpretation of astrophysical observables from these stars.

7.
Phys Rev Lett ; 115(25): 252501, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26722918

RESUMO

The ^{22}Ne(p,γ)^{23}Na reaction takes part in the neon-sodium cycle of hydrogen burning. This cycle affects the synthesis of the elements between ^{20}Ne and ^{27}Al in asymptotic giant branch stars and novae. The ^{22}Ne(p,γ)^{23}Na reaction rate is very uncertain because of a large number of unobserved resonances lying in the Gamow window. At proton energies below 400 keV, only upper limits exist in the literature for the resonance strengths. Previous reaction rate evaluations differ by large factors. In the present work, the first direct observations of the ^{22}Ne(p,γ)^{23}Na resonances at 156.2, 189.5, and 259.7 keV are reported. Their resonance strengths are derived with 2%-7% uncertainty. In addition, upper limits for three other resonances are greatly reduced. Data are taken using a windowless ^{22}Ne gas target and high-purity germanium detectors at the Laboratory for Underground Nuclear Astrophysics in the Gran Sasso laboratory of the National Institute for Nuclear Physics, Italy, taking advantage of the ultralow background observed deep underground. The new reaction rate is a factor of 20 higher than the recent evaluation at a temperature of 0.1 GK, relevant to nucleosynthesis in asymptotic giant branch stars.

8.
Phys Rev Lett ; 113(4): 042501, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25105610

RESUMO

Recent observations of (6)Li in metal poor stars suggest a large production of this isotope during big bang nucleosynthesis (BBN). In standard BBN calculations, the (2)H(α,γ)(6)Li reaction dominates (6)Li production. This reaction has never been measured inside the BBN energy region because its cross section drops exponentially at low energy and because the electric dipole transition is strongly suppressed for the isoscalar particles (2)H and α at energies below the Coulomb barrier. Indirect measurements using the Coulomb dissociation of (6)Li only give upper limits owing to the dominance of nuclear breakup processes. Here, we report on the results of the first measurement of the (2)H(α,γ)(6)Li cross section at big bang energies. The experiment was performed deep underground at the LUNA 400 kV accelerator in Gran Sasso, Italy. The primordial (6)Li/(7)Li isotopic abundance ratio has been determined to be (1.5 ± 0.3) × 10(-5), from our experimental data and standard BBN theory. The much higher (6)Li/(7)Li values reported for halo stars will likely require a nonstandard physics explanation, as discussed in the literature.

9.
Phys Rev Lett ; 109(20): 202501, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23215474

RESUMO

Classical novae are important contributors to the abundances of key isotopes, such as the radioactive (18)F, whose observation by satellite missions could provide constraints on nucleosynthesis models in novae. The (17)O(p,γ)(18)F reaction plays a critical role in the synthesis of both oxygen and fluorine isotopes, but its reaction rate is not well determined because of the lack of experimental data at energies relevant to novae explosions. In this study, the reaction cross section has been measured directly for the first time in a wide energy range E(c.m.)~/= 200-370 keV appropriate to hydrogen burning in classical novae. In addition, the E(c.m.)=183 keV resonance strength, ωγ=1.67±0.12 µeV, has been measured with the highest precision to date. The uncertainty on the (17)O(p,γ)(18)F reaction rate has been reduced by a factor of 4, thus leading to firmer constraints on accurate models of novae nucleosynthesis.

10.
Phys Rev Lett ; 104(24): 241601, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20867292

RESUMO

The possibility of anisotropies in the speed of light relative to the limiting speed of electrons is considered. The absence of sidereal variations in the energy of Compton-edge photons at the European Synchrotron Radiation Facility's GRAAL facility constrains such anisotropies representing the first nonthreshold collision-kinematics study of Lorentz violation. When interpreted within the minimal standard-model extension, this result yields the two-sided limit of 1.6×10(-14) at 95% confidence level on a combination of the parity-violating photon and electron coefficients (κ(o+))(YZ), (κ(o+))(ZX), c(TX), and c(TY). This new constraint provides an improvement over previous bounds by 1 order of magnitude.

11.
Phys Rev Lett ; 100(5): 052003, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18352363

RESUMO

The analysis of the gammap-->etapi(0)p reaction has been performed using data from the GRAAL experiment. The total and differential cross sections and the beam asymmetry have been obtained from threshold up to 1.5 GeV of beam energy. The two resonances S11(1535) and Delta(1700) are expected to be excited in the intermediate states of this reaction. The results are used to test predictions based on the assumption that both resonances are dynamically generated from the meson-baryon interaction provided by chiral Lagrangians. The term involving the Delta(1700) excitation, followed by the decay into etaDelta(1232), is found to be dominant.

12.
Electromagn Biol Med ; 26(2): 119-34, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17613039

RESUMO

Current methods for bladder cancer investigation involve cystoscopy, ultrasound scanning, and contrast urography, with additional information provided by cytology. These methods, although having a high detection rate, are expensive, time-consuming, invasive, and uncomfortable. Therefore, there is a need for an inexpensive, non invasive, quick, and simple investigation with a high sensitivity and specificity. In this study we evaluate the use of an in vivo electromagnetic (EM) interaction as a non invasive method for detecting cancer. A clinical trial was designed and completed. The main trial target was the feasibility assessment of the novel method by comparing its results with standard cystoscopy. A physical discussion of the EM interaction with bladder cancer tissue is presented. One hundred and fourteen patients referred for cystoscopy by microscopic or gross haematuria, irritative voiding symptoms, or suspected bladder tumor at ultrasound were first submitted to EM scan by means of the TRIMprob system. Cystoscopy was performed on each patient after the TRIMprob examination. Comparison between EM and cystoscopy results provides a high level of agreement (Cohen's K = 0.77, p < 0.001). The TRIMprob performance in malignant cancer cells detection suggests that this in vivo EM waves method is also worth investigating for routine diagnostic procedures.


Assuntos
Campos Eletromagnéticos , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Computadores , Diagnóstico por Imagem/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Radiografia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Software
13.
Phys Rev Lett ; 97(12): 122502, 2006 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-17025958

RESUMO

The nuclear physics input from the 3He(alpha,gamma)7Be cross section is a major uncertainty in the fluxes of 7Be and 8B neutrinos from the Sun predicted by solar models and in the 7Li abundance obtained in big-bang nucleosynthesis calculations. The present work reports on a new precision experiment using the activation technique at energies directly relevant to big-bang nucleosynthesis. Previously such low energies had been reached experimentally only by the prompt-gamma technique and with inferior precision. Using a windowless gas target, high beam intensity, and low background gamma-counting facilities, the 3He(alpha,gamma)7Be cross section has been determined at 127, 148, and 169 keV center-of-mass energy with a total uncertainty of 4%. The sources of systematic uncertainty are discussed in detail. The present data can be used in big-bang nucleosynthesis calculations and to constrain the extrapolation of the 3He(alpha,gamma)7Be astrophysical S factor to solar energies.

14.
Phys Rev Lett ; 90(22): 222001, 2003 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-12857308

RESUMO

The double pi(0) photoproduction off the proton has been measured in the beam energy range of 0.65-1.5 GeV. The total and differential cross sections and the Sigma beam asymmetry were extracted. The total cross section measured for the first time in the third resonance region of the nucleon shows a prominent peak. The interpretation of these results by two independent theoretical models infers mostly the selective excitation of P11- and D13-nucleon resonances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...