Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 981602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204061

RESUMO

Alginate (alginic acid) is a linear polysaccharide, wherein (1→4)-linked ß-D-mannuronic acid and its C5 epimer, α-L-guluronic acid, are arranged in varying sequences. Alginate lyases catalyze the depolymerization of alginate, thereby cleaving the (1→4) glycosidic linkages between the monomers by a ß-elimination mechanism, to yield unsaturated 4-deoxy-L-erythro-hex-4-enopyranosyluronic acid (Δ) at the non-reducing end of resulting oligosaccharides (α-L-erythro configuration) or, depending on the enzyme, the unsaturated monosaccharide itself. In solution, the released free unsaturated monomer product is further hydrated in a spontaneous (keto-enol tautomerization) process to form two cyclic stereoisomers. In this study, two alginate lyase genes, designated alyRm3 and alyRm4, from the marine thermophilic bacterium Rhodothermus marinus (strain MAT378), were cloned and expressed in Escherichia coli. The recombinant enzymes were characterized, and their substrate specificity and product structures determined. AlyRm3 (PL39) and AlyRm4 (PL17) are among the most thermophilic and thermostable alginate lyases described to date with temperature optimum of activity at ∼75 and 81°C, respectively. The pH optimum of activity of AlyRm3 is ∼5.5 and AlyRm4 at pH 6.5. Detailed NMR analysis of the incubation products demonstrated that AlyRm3 is an endolytic lyase, while AlyRm4 is an exolytic lyase, cleaving monomers from the non-reducing end of oligo/poly-alginates.

2.
J Agric Food Chem ; 69(34): 9859-9868, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34427087

RESUMO

Starch-acting α-glucanotransferase enzymes are of great interest for applications in the food industry. In previous work, we have characterized various 4,6- and 4,3-α-glucanotransferases of the glycosyl hydrolase (GH) family 70 (subfamily GtfB), synthesizing linear or branched α-glucans. Thus far, GtfB enzymes have only been identified in mesophilic Lactobacilli. Database searches showed that related GtfC enzymes occur in Gram-positive bacteria of the genera Exiguobacterium, Bacillus, and Geobacillus, adapted to growth at more extreme temperatures. Here, we report characteristics of the Geobacillus sp. 12AMOR1 GtfC enzyme, with an optimal reaction temperature of 60 °C and a melting temperature of 68 °C, allowing starch conversions at relatively high temperatures. This thermostable 4,6-α-glucanotransferase has a novel product specificity, cleaving off predominantly maltose units from amylose, attaching them with an (α1 → 6)-linkage to acceptor substrates. In fact, this GtfC represents a novel maltogenic α-amylase. Detailed structural characterization of its starch-derived α-glucan products revealed that it yielded a unique polymer with alternating (α1 → 6)/(α1 → 4)-linked glucose units but without branches. Notably, this Geobacillus sp. 12AMOR1 GtfC enzyme showed clear antistaling effects in bread bakery products.


Assuntos
Geobacillus , Sistema da Enzima Desramificadora do Glicogênio , Pão , Geobacillus/genética , Glucanos , Sistema da Enzima Desramificadora do Glicogênio/genética
3.
Food Chem ; 272: 653-662, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30309594

RESUMO

The adverse health effects of sucrose overconsumption, typical for diets in developed countries, necessitate use of low-calorie sweeteners. Following approval by the European Commission (2011), steviol glycosides are increasingly used as high-intensity sweeteners in food. Stevioside is the most prevalent steviol glycoside in Stevia rebaudiana plant leaves, but it has found limited applications in food products due to its lingering bitterness. Enzymatic glucosylation is a strategy to reduce stevioside bitterness, but reported glucosylation reactions suffer from low productivities. Here we present the optimized and efficient α-glucosylation of stevioside using the mutant glucansucrase Gtf180-ΔN-Q1140E and sucrose as donor substrate. Structures of novel products were elucidated by NMR spectroscopy, mass spectrometry and methylation analysis; stevioside was mainly glucosylated at the steviol C-19 glucosyl moiety. Sensory analysis of the α-glucosylated stevioside products by a trained panel revealed a significant reduction in bitterness compared to stevioside, resulting in significant improvement of edulcorant/organoleptic properties.


Assuntos
Proteínas de Bactérias/metabolismo , Diterpenos do Tipo Caurano/metabolismo , Glucosídeos/metabolismo , Glicosiltransferases/metabolismo , Paladar/fisiologia , Proteínas de Bactérias/genética , Diterpenos do Tipo Caurano/análise , Glucosídeos/análise , Glicosilação , Glicosiltransferases/genética , Humanos , Isomerismo , Lactobacillus/enzimologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Mutagênese , Folhas de Planta/metabolismo , Stevia/metabolismo , Sacarose/química , Sacarose/metabolismo , Edulcorantes/análise , Edulcorantes/metabolismo
4.
Methods Mol Biol ; 1887: 67-84, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30506250

RESUMO

Production of exopolysaccharides by lactic acid bacteria is a common phenomenon. Structural information of these widely diverse biopolymers is rendered by the monosaccharide composition, the anomeric configurations, the type of glycosidic linkages, the presence of repeating units and noncarbohydrate substituents, and finally the presentation of a chemical molecular structure or composite model. The detailed structural analysis of polysaccharides is a time-consuming pursuit, including the use of different techniques, such as chemical degradation methods (e.g., hydrolysis), separation methods (e.g., SEC-chromatography and HPLC/HPAEC), and identification methods (e.g., GLC-EIMS and 1H/13C NMR spectroscopy). In this chapter, some analytical methods are described and demonstrated for two different exopolysaccharides from lactic acid bacteria.


Assuntos
Lactobacillales/química , Estrutura Molecular , Polissacarídeos Bacterianos/química , Acetilação , Glicosídeos , Hidrólise , Lactobacillales/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Monossacarídeos/química , Oxirredução , Polissacarídeos Bacterianos/metabolismo
5.
Sci Rep ; 8(1): 1516, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367749

RESUMO

Steviol glycosides from the leaves of the plant Stevia rebaudiana are high-potency natural sweeteners but suffer from a lingering bitterness. The Lactobacillus reuteri 180 wild-type glucansucrase Gtf180-ΔN, and in particular its Q1140E-mutant, efficiently α-glucosylated rebaudioside A (RebA), using sucrose as donor substrate. Structural analysis of the products by MALDI-TOF mass spectrometry, methylation analysis and NMR spectroscopy showed that both enzymes exclusively glucosylate the Glc(ß1→C-19 residue of RebA, with the initial formation of an (α1→6) linkage. Docking of RebA in the active site of the enzyme revealed that only the steviol C-19 ß-D-glucosyl moiety is available for glucosylation. Response surface methodology was applied to optimize the Gtf180-ΔN-Q1140E-catalyzed α-glucosylation of RebA, resulting in a highly productive process with a RebA conversion of 95% and a production of 115 g/L α-glucosylated products within 3 h. Development of a fed-batch reaction allowed further suppression of α-glucan synthesis which improved the product yield to 270 g/L. Sensory analysis by a trained panel revealed that glucosylated RebA products show a significant reduction in bitterness, resulting in a superior taste profile compared to RebA. The Gtf180-ΔN-Q1140E glucansucrase mutant enzyme thus is an efficient biocatalyst for generating α-glucosylated RebA variants with improved edulcorant/organoleptic properties.


Assuntos
Diterpenos do Tipo Caurano/metabolismo , Glicosilação , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Limosilactobacillus reuteri/enzimologia , Edulcorantes/metabolismo , Diterpenos do Tipo Caurano/química , Espectroscopia de Ressonância Magnética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sacarose/metabolismo , Edulcorantes/química , Paladar
6.
Carbohydr Res ; 440-441: 51-62, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28231561

RESUMO

The wild-type Gtf180-ΔN glucansucrase enzyme from Lactobacillus reuteri 180 was found to catalyze the α-glucosylation of the steviol glycoside rebaudioside A, using sucrose as glucosyl donor in a transglucosylation process. Structural analysis of the formed products by MALDI-TOF mass spectrometry, methylation analysis and NMR spectroscopy showed that rebaudioside A is specifically α-d-glucosylated at the steviol C-19 ß-d-glucosyl moiety (55% conversion). The main product is a mono-(α1 â†’ 6)-glucosylated derivative (RebA-G1). A series of minor products, up to the incorporation of eight glucose residues, comprise elongations of RebA-G1 with mainly alternating (α1 â†’ 3)- and (α1 â†’ 6)-linked glucopyranose residues. These studies were carried out in the context of a program directed to the improvement of the taste of steviol glycosides via enzymatic modification of their naturally occurring carbohydrate moieties.


Assuntos
Proteínas de Bactérias/química , Diterpenos do Tipo Caurano/química , Glucose/química , Glicosiltransferases/química , Limosilactobacillus reuteri/química , Sacarose/química , Proteínas de Bactérias/isolamento & purificação , Configuração de Carboidratos , Catálise , Glicosilação , Glicosiltransferases/isolamento & purificação , Limosilactobacillus reuteri/enzimologia , Espectroscopia de Ressonância Magnética , Metilação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Stevia/química
7.
Sci Rep ; 7: 39761, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28059108

RESUMO

Lactic acid bacteria possess a diversity of glucansucrase (GS) enzymes that belong to glycoside hydrolase family 70 (GH70) and convert sucrose into α-glucan polysaccharides with (α1 → 2)-, (α1 → 3)-, (α1 → 4)- and/or (α1 → 6)-glycosidic bonds. In recent years 3 novel subfamilies of GH70 enzymes, inactive on sucrose but using maltodextrins/starch as substrates, have been established (e.g. GtfB of Lactobacillus reuteri 121). Compared to the broad linkage specificity found in GSs, all GH70 starch-acting enzymes characterized so far possess 4,6-α-glucanotransferase activity, cleaving (α1 → 4)-linkages and synthesizing new (α1 → 6)-linkages. In this work a gene encoding a putative GH70 family enzyme was identified in the genome of Lactobacillus fermentum NCC 2970, displaying high sequence identity with L. reuteri 121 GtfB 4,6-α-glucanotransferase, but also with unique variations in some substrate-binding residues of GSs. Characterization of this L. fermentum GtfB and its products revealed that it acts as a 4,3-α-glucanotransferase, converting amylose into a new type of α-glucan with alternating (α1 → 3)/(α 1 → 4)-linkages and with (α1 → 3,4) branching points. The discovery of this novel reaction specificity in GH70 family and clan GH-H expands the range of α-glucans that can be synthesized and allows the identification of key positions governing the linkage specificity within the active site of the GtfB-like GH70 subfamily of enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Glucosiltransferases/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Limosilactobacillus fermentum/enzimologia , Limosilactobacillus reuteri/enzimologia , Proteínas de Bactérias/química , Evolução Molecular , Glucanos/química , Glucanos/metabolismo , Glucosiltransferases/química , Sistema da Enzima Desramificadora do Glicogênio/química , Glicosídeos/química , Glicosídeos/metabolismo , Filogenia , Polissacarídeos/química , Polissacarídeos/metabolismo , Especificidade por Substrato , Sacarose/química , Sacarose/metabolismo
8.
Food Chem ; 217: 81-90, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27664611

RESUMO

Exopolysaccharides produced by lactic acid bacteria are extensively used for food applications. Glucansucrase enzymes of lactic acid bacteria use sucrose to catalyze the synthesis of α-glucans with different linkage compositions, size and physico-chemical properties. Crystallographic studies of GTF180-ΔN show that at the acceptor binding sites +1 and +2, residue W1065 provides stacking interactions to the glucosyl moiety. However, the detailed functional roles of W1065 have not been elucidated. We performed random mutagenesis targeting residue W1065 of GTF180-ΔN, resulting in the generation of 10 mutant enzymes that were characterized regarding activity and product specificity. Characterization of mutant enzymes showed that residue W1065 is critical for the activity of GTF180-ΔN. Using sucrose, and sucrose (donor) plus maltose (acceptor) as substrates, the mutant enzymes synthesized polysaccharides and oligosaccharides with changed linkage composition. The stacking interaction of an aromatic residue at position 1065 is essential for polysaccharide synthesis.


Assuntos
Ligação Genética/genética , Glicosiltransferases/genética , Mutação/genética , Oligossacarídeos/genética , Polissacarídeos/genética , Glicosiltransferases/química , Limosilactobacillus reuteri/enzimologia , Limosilactobacillus reuteri/genética , Maltose/biossíntese , Maltose/química , Maltose/genética , Oligossacarídeos/biossíntese , Oligossacarídeos/química , Polissacarídeos/biossíntese , Polissacarídeos/química , Estrutura Secundária de Proteína , Sacarose/química , Sacarose/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-27816105

RESUMO

Stevia glycosides, extracted from the leaves of the plant Stevia rebaudiana Bertoni, display an amazing high degree of sweetness. As processed plant products, they are considered as excellent bio-alternatives for sucrose and artificial sweeteners. Being noncaloric and having beneficial properties for human health, they are the subject of an increasing number of studies for applications in food and pharmacy. However, one of the main obstacles for the successful commercialization of Stevia sweeteners, especially in food, is their slight bitter aftertaste and astringency. These undesirable properties may be reduced or eliminated by modifying the carbohydrate moieties of the steviol glycosides. A promising procedure is to subject steviol glycosides to enzymatic glycosylation, thereby introducing additional monosaccharide residues into the molecules. Depending on the number and positions of the monosaccharide units, the taste quality and sweetness potency of the compounds will vary. Many studies have been performed already, and this review summarizes the structures of native steviol glycosides and the recent data of modifications of the carbohydrate moieties that have been published to provide an overview of the current progress.


Assuntos
Carboidratos/química , Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/metabolismo , Glucosiltransferases/metabolismo , Glicosídeo Hidrolases/metabolismo , Edulcorantes/química , Edulcorantes/metabolismo , Humanos
10.
Sci Rep ; 6: 35261, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27748434

RESUMO

The glucansucrase GTFA of Lactobacillus reuteri 121 produces an α-glucan (reuteran) with a large amount of alternating (α1 → 4) and (α1 → 6) linkages. The mechanism of alternating linkage formation by this reuteransucrase has remained unclear. GTFO of the probiotic bacterium Lactobacillus reuteri ATCC 55730 shows a high sequence similarity (80%) with GTFA of L. reuteri 121; it also synthesizes an α-glucan with (α1 → 4) and (α1 → 6) linkages, but with a clearly different ratio compared to GTFA. In the present study, we show that residues in loop977 (970DGKGYKGA977) and helix α4 (1083VSLKGA1088) are main determinants for the linkage specificity difference between GTFO and GTFA, and hence are important for the synthesis of alternating (α1 → 4) and (α1 → 6) linkages in GTFA. More remote acceptor substrate binding sites (i.e.+3) are also involved in the determination of alternating linkage synthesis, as shown by structural analysis of the oligosaccharides produced using panose and maltotriose as acceptor substrate. Our data show that the amino acid residues at acceptor substrate binding sites (+1, +2, +3…) together form a distinct physicochemical micro-environment that determines the alternating (α1 → 4) and (α1 → 6) linkages synthesis in GTFA.


Assuntos
Glicosiltransferases/química , Limosilactobacillus reuteri/enzimologia , Oligossacarídeos/química , Proteínas de Bactérias/química , Sítios de Ligação , Glucanos/química , Hidrólise , Espectroscopia de Ressonância Magnética , Maltose/química , Mutagênese Sítio-Dirigida , Mutação , Polissacarídeos/química , Probióticos , Especificidade por Substrato , Sacarose/química
11.
Glycobiology ; 26(11): 1157-1170, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27550196

RESUMO

Recently, we have shown that glycoside hydrolases enzymes of family GH17 from proteobacteria (genera Pseudomonas, Azotobacter) catalyze elongation transfer reactions with laminari-oligosaccharides generating (ß1→3) linkages preferably and to a lesser extent (ß1→6) or (ß1→4) linkages. In the present study, the cloning and characterization of the gene encoding the structurally very similar GH17 domain of the NdvB enzyme from Bradyrhizobium diazoefficiens, designated Glt20, as well as its catalytic properties are described. The Glt20 enzyme was strikingly different from the previously investigated bacterial GH17 enzymes, both regarding substrate specificity and product formation. The Azotobacter and Pseudomonas enzymes cleaved the donor laminari-oligosaccharide substrates three or four moieties from the non-reducing end, generating linear oligosaccharides. In contrast, the Glt20 enzyme cleaved donor laminari-oligosaccharide substrates two glucose moieties from the reducing end, releasing laminaribiose and transferring the remainder to laminari-oligosaccharide acceptor substrates creating only (ß1→3)(ß1→6) branching points. This enables Glt20 to transfer larger oligosaccharide chains than the other type of bacterial enzymes previously described, and helps explain the biologically significant formation of cyclic ß-glucans in B. diazoefficiens.


Assuntos
Bradyrhizobium/enzimologia , Oligossacarídeos/metabolismo , beta-Glucosidase/metabolismo , Biocatálise , Proteínas Recombinantes/metabolismo , beta-Glucosidase/genética
12.
Carbohydr Polym ; 151: 29-39, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27474540

RESUMO

Lactic acid bacteria (LAB) produce exopolysaccharides (EPS) that are important for biofilm formation in the mammalian oral cavity and gastrointestinal tract. Sucrose is a well-known substrate for homo-EPS formation by Lactobacillus reuteri glucansucrases (GS). Starch is the main fermentable carbohydrate in the human diet, and often consumed simultaneously with sucrose. Recently we have characterized L. reuteri strains that also possess 4,6-α-glucanotransferases (4,6-α-GTases) that act on starch yielding isomalto-/malto-polysaccharides. In this study we have characterized the EPS formed by L. reuteri 35-5 cells and enzymes from sucrose plus starch. The data show that both in vivo and in vitro the L. reuteri 35-5 GS and 4,6-α-GTase enzymes, incubated with sucrose plus starch, cross-react and contribute to synthesis of the final hybrid EPS products. This may have strong effects on the EPS functional properties, influence biofilm formation, and affect the relationship between dietary intake of sucrose and starch, and dental caries formation.


Assuntos
Biopolímeros/biossíntese , Limosilactobacillus reuteri/metabolismo , Polissacarídeos/biossíntese , Amido/metabolismo , Sacarose/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/genética , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Limosilactobacillus reuteri/genética
13.
J Agric Food Chem ; 64(2): 433-42, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26688101

RESUMO

α-Glucans produced by glucansucrase enzymes of lactic acid bacteria attract strong attention as novel ingredients and functional biopolymers in the food industry. In the present study, α-helix 4 amino acid residues D1085, R1088, and N1089 of glucansucrase GTF180 of Lactobacillus reuteri 180 were targeted for mutagenesis both jointly and separately. Analysis of the mutational effects on enzyme function revealed that all D1085 and R1088 mutants catalyzed the synthesis of hyperbranched α-glucans with 15-22% branching (α1→3,6) linkages, compared to 13% in the wild-type GTF180. In addition, besides native (α1→6) and (α1→3) linkages, all of the mutations introduced a small amount of (α1→4) linkages (5% at most) in the polysaccharides produced. We conclude that α-helix 4 residues, especially D1085 and R1088, constituting part of the +2 acceptor binding subsite, are important determinants for the linkage specificity. The new hyperbranched α-glucans provide very interesting structural diversities and may find applications in the food industry.


Assuntos
Proteínas de Bactérias/metabolismo , Glucanos/biossíntese , Glucanos/química , Glicosiltransferases/metabolismo , Limosilactobacillus reuteri/enzimologia , Sacarose/metabolismo , Proteínas de Bactérias/genética , Glicosiltransferases/genética , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/metabolismo , Estrutura Molecular , Mutagênese , Mutação
14.
J Biol Chem ; 290(50): 30131-41, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26507662

RESUMO

α-Glucans produced by glucansucrase enzymes hold strong potential for industrial applications. The exact determinants of the linkage specificity of glucansucrase enzymes have remained largely unknown, even with the recent elucidation of glucansucrase crystal structures. Guided by the crystal structure of glucansucrase GTF180-ΔN from Lactobacillus reuteri 180 in complex with the acceptor substrate maltose, we identified several residues (Asp-1028 and Asn-1029 from domain A, as well as Leu-938, Ala-978, and Leu-981 from domain B) near subsite +1 that may be critical for linkage specificity determination, and we investigated these by random site-directed mutagenesis. First, mutants of Ala-978 (to Leu, Pro, Phe, or Tyr) and Asp-1028 (to Tyr or Trp) with larger side chains showed reduced degrees of branching, likely due to the steric hindrance by these bulky residues. Second, Leu-938 mutants (except L938F) and Asp-1028 mutants showed altered linkage specificity, mostly with increased (α1 → 6) linkage synthesis. Third, mutation of Leu-981 and Asn-1029 significantly affected the transglycosylation reaction, indicating their essential roles in acceptor substrate binding. In conclusion, glucansucrase product specificity is determined by an interplay of domain A and B residues surrounding the acceptor substrate binding groove. Residues surrounding the +1 subsite thus are critical for activity and specificity of the GTF180 enzyme and play different roles in the enzyme functions. This study provides novel insights into the structure-function relationships of glucansucrase enzymes and clearly shows the potential of enzyme engineering to produce tailor-made α-glucans.


Assuntos
Aminoácidos/metabolismo , Glicosiltransferases/metabolismo , Limosilactobacillus reuteri/enzimologia , Sequência de Aminoácidos , Aminoácidos/química , Domínio Catalítico , Cromatografia Gasosa-Espectrometria de Massas , Glicosiltransferases/química , Glicosiltransferases/genética , Metilação , Dados de Sequência Molecular , Mutagênese , Espectroscopia de Prótons por Ressonância Magnética , Homologia de Sequência de Aminoácidos
15.
Carbohydr Res ; 414: 85-92, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26281004

RESUMO

GTFA, a glucansucrase enzyme of the probiotic bacterium Lactobacillus reuteri 121, is capable of synthesizing an α-glucan polysaccharide with (1 → 4) and (1 → 6) linkages from sucrose. With respect to its biosynthesis, the present study has shown that the ratio of oligosaccharide versus polysaccharide synthesized was directly proportional to the concentration of sucrose. It appears that the size distribution of products is kinetically controlled, but the linkage distribution in the polysaccharide material is not changed. At high sucrose concentrations the sucrose isomers leucrose and trehalulose were synthesized, using the accumulated fructose as acceptor, together with 4'- and 6'-α-D-glucosyl-leucrose and 6'-α-D-glucosyl-trehalulose. The finding of an additional branched hexasaccharide demonstrates that the enzyme is able to introduce branch-points already in relatively short oligosaccharides.


Assuntos
Glicosiltransferases/metabolismo , Limosilactobacillus reuteri/enzimologia , Polissacarídeos/metabolismo , Sacarose/metabolismo , Proteínas de Bactérias/metabolismo , Cinética , Limosilactobacillus reuteri/metabolismo , Oligossacarídeos/metabolismo
16.
Cell Rep ; 11(12): 1966-78, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26095364

RESUMO

Sialic acids (Sias), 9-carbon-backbone sugars, are among the most complex and versatile molecules of life. As terminal residues of glycans on proteins and lipids, Sias are key elements of glycotopes of both cellular and microbial lectins and thus act as important molecular tags in cell recognition and signaling events. Their functions in such interactions can be regulated by post-synthetic modifications, the most common of which is differential Sia-O-acetylation (O-Ac-Sias). The biology of O-Ac-Sias remains mostly unexplored, largely because of limitations associated with their specific in situ detection. Here, we show that dual-function hemagglutinin-esterase envelope proteins of nidoviruses distinguish between a variety of closely related O-Ac-Sias. By using soluble forms of hemagglutinin-esterases as lectins and sialate-O-acetylesterases, we demonstrate differential expression of distinct O-Ac-sialoglycan populations in an organ-, tissue- and cell-specific fashion. Our findings indicate that programmed Sia-O-acetylation/de-O-acetylation may be critical to key aspects of cell development, homeostasis, and/or function.


Assuntos
Acetilesterase/biossíntese , Hemaglutininas Virais/genética , Ácido N-Acetilneuramínico/genética , Ácidos Siálicos/genética , Proteínas Virais de Fusão/genética , Acetilação , Acetilesterase/genética , Animais , Regulação da Expressão Gênica , Genoma , Hemaglutininas Virais/química , Hemaglutininas Virais/metabolismo , Humanos , Lipídeos/química , Lipídeos/genética , Mamíferos , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Nidovirales/química , Proteínas/química , Proteínas/genética , Ácidos Siálicos/química , Especificidade da Espécie , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo
17.
J Agric Food Chem ; 63(25): 5976-84, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26044147

RESUMO

Decoration of prebiotic galacto-oligosaccharides (GOS) with sialic acid yields mixtures of GOS and sialylated GOS (Sia-GOS), novel products that are expected to have both prebiotic and antiadhesive functionalities. The recombinantly produced trans-sialidase enzyme from Trypanosoma cruzi (TcTS), an enzyme with the ability to transfer (α2-3)-linked sialic acid from sialogalactoglycans to asialogalactoglycans, was employed to catalyze this sialylation. As sialic acid acceptor substrates, Vivinal GOS and derived fractions of specific degree of polymerization were taken. As sialic acid donor substrates, bovine κ-casein-derived glycomacropeptide [>99% N-acetylneuraminic acid (Neu5Ac); <1% N-glycolylneuraminic acid (Neu5Gc)] and bovine blood plasma glycoprotein mixture (45% Neu5Ac; 55% Neu5Gc) were selected, yielding potential food and feed products, respectively. High-pH anion-exchange chromatography, matrix-assisted laser-desorption ionization time-of-flight mass spectrometry, and nuclear magnetic resonance spectroscopy were used for product analysis.


Assuntos
Caseínas/química , Glicoconjugados/química , Glicopeptídeos/química , Glicoproteínas/química , Ácido N-Acetilneuramínico/química , Neuraminidase/química , Oligossacarídeos/química , Prebióticos/análise , Proteínas de Protozoários/química , Animais , Bovinos , Cor , Glicoproteínas/genética , Glicoproteínas/metabolismo , Estrutura Molecular , Neuraminidase/genética , Neuraminidase/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/enzimologia
18.
Carbohydr Res ; 411: 49-55, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25974853

RESUMO

Different fungi, including the genera Neosartorya, Byssochlamys and Talaromyces, produce (asco)spores that survive pasteurization treatments and are regarded as the most stress-resistant eukaryotic cells. Here, the NMR analysis of a series of trehalose-based oligosaccharides, being compatible solutes that are accumulated to high levels in ascospores of the fungus Neosartorya fischeri, is presented. These oligosaccharides consist of an α,α-trehalose backbone, extended with one [α-D-Glcp-(1 → 6)-α-D-Glcp-(1 ↔ 1)-α-D-Glcp; isobemisiose], two [α-D-Glcp-(1 → 6)-α-D-Glcp-(1 → 6)-α-D-Glcp-(1 ↔ 1)-α-D-Glcp] or three [α-D-Glcp-(1 → 6)-α-D-Glcp-(1 → 6)-α-D-Glcp-(1 → 6)-α-D-Glcp-(1 ↔ 1)-α-D-Glcp] glucose units. The tetra- and pentasaccharide, dubbed neosartose and fischerose, respectively, have not been reported before to occur in nature.


Assuntos
Aspergillus/química , Polissacarídeos Fúngicos/química , Esporos Fúngicos/química , Trealose/química , Aspergillus/fisiologia , Configuração de Carboidratos , Sequência de Carboidratos , Cromatografia em Gel , Polissacarídeos Fúngicos/isolamento & purificação , Dados de Sequência Molecular , Trealose/isolamento & purificação
19.
Appl Microbiol Biotechnol ; 99(14): 5885-94, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25586581

RESUMO

Glucansucrases are exclusively found in lactic acid bacteria and synthesize a variety of α-glucans from sucrose. They are large multidomain enzymes belonging to the CAZy family 70 of glycoside hydrolase enzymes (GH70). The crystal structure of the N-terminal truncated GTF180 of Lactobacillus reuteri 180 (GTF180-ΔN) revealed that the polypeptide chain follows a U shape course to form five domains, including domains A, B, and C, which resemble those of family GH13 enzymes, and two extra and novel domains (domains IV and V), which are attached to the catalytic core. To elucidate the functional roles of domain V, we have deleted the domain V fragments from both the N- and C-terminal ends (GTF180-ΔNΔV). Truncation of domain V of GTF180-ΔN yielded a catalytically fully active enzyme but with heavily impaired polysaccharide synthesis ability. Instead, GTF180-ΔNΔV produced a large amount of oligosaccharides. Domain V is not involved in determining the linkage specificity, and the size of polysaccharide produced as the polysaccharide produced by GTF180-ΔNΔV was identical in size and structure with that of GTF180-ΔN. The data indicates that GTF180-ΔNΔV acts nonprocessively, frequently initiating synthesis of a new oligosaccharide from sucrose, instead of continuing the synthesis of a full size polysaccharide. Mutations L940E and L940F in GTF180-ΔNΔV, which are involved in the acceptor substrate binding, restored polysaccharide synthesis almost to the level of GTF180-ΔN. These results demonstrated that interactions of growing glucan chains with both domain V and acceptor substrate binding sites are important for polysaccharide synthesis.


Assuntos
Glicosiltransferases/metabolismo , Limosilactobacillus reuteri/enzimologia , Limosilactobacillus reuteri/metabolismo , Polissacarídeos/biossíntese , Glicosiltransferases/genética , Limosilactobacillus reuteri/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Deleção de Sequência
20.
Glycobiology ; 24(8): 728-39, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24789815

RESUMO

Human milk oligosaccharides (HMOs) are a major constituent of human breast milk and play an important role in reducing the risk of infections in infants. The structures of these HMOs show similarities with blood group antigens in protein glycosylation, in particular in relation to fucosylation in Lewis blood group-type epitopes, matching the maternal pattern. Previously, based on the Secretor and Lewis blood group system, four milk groups have been defined, i.e. Lewis-positive Secretors, Lewis-positive non-Secretors, Lewis-negative Secretors and Lewis-negative non-Secretors. Here, a rapid one-dimensional (1)H nuclear magnetic resonance (NMR) analysis method is presented that identifies the presence/absence of (α1-2)-, (α1-3)- and (α1-4)-linked fucose residues in HMO samples, affording the essential information to attribute different HMO samples to a specific milk group. The developed method is based on the NMR structural-reporter-group concept earlier established for glycoprotein glycans. Further evaluation of the data obtained from the analysis of 36 HMO samples shows that within each of the four milk groups the relative levels of the different fucosylation epitopes can greatly vary. The data also allow a separation of the Lewis-positive Secretor milk group into two sub-groups.


Assuntos
Epitopos/análise , Antígenos do Grupo Sanguíneo de Lewis/análise , Leite Humano/química , Oligossacarídeos/química , Epitopos/química , Epitopos/imunologia , Humanos , Antígenos do Grupo Sanguíneo de Lewis/química , Antígenos do Grupo Sanguíneo de Lewis/imunologia , Espectroscopia de Ressonância Magnética , Leite Humano/imunologia , Oligossacarídeos/análise , Oligossacarídeos/imunologia , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...