Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 898: 165466, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451445

RESUMO

This study aims to picture the phenomenology of urban ambient total lung deposited surface area (LDSA) (including head/throat (HA), tracheobronchial (TB), and alveolar (ALV) regions) based on multiple path particle dosimetry (MPPD) model during 2017-2019 period collected from urban background (UB, n = 15), traffic (TR, n = 6), suburban background (SUB, n = 4), and regional background (RB, n = 1) monitoring sites in Europe (25) and USA (1). Briefly, the spatial-temporal distribution characteristics of the deposition of LDSA, including diel, weekly, and seasonal patterns, were analyzed. Then, the relationship between LDSA and other air quality metrics at each monitoring site was investigated. The result showed that the peak concentrations of LDSA at UB and TR sites are commonly observed in the morning (06:00-8:00 UTC) and late evening (19:00-22:00 UTC), coinciding with traffic rush hours, biomass burning, and atmospheric stagnation periods. The only LDSA night-time peaks are observed on weekends. Due to the variability of emission sources and meteorology, the seasonal variability of the LDSA concentration revealed significant differences (p = 0.01) between the four seasons at all monitoring sites. Meanwhile, the correlations of LDSA with other pollutant metrics suggested that Aitken and accumulation mode particles play a significant role in the total LDSA concentration. The results also indicated that the main proportion of total LDSA is attributed to the ALV fraction (50 %), followed by the TB (34 %) and HA (16 %). Overall, this study provides valuable information of LDSA as a predictor in epidemiological studies and for the first time presenting total LDSA in a variety of European urban environments.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Emissões de Veículos/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Poeira , Pulmão , Europa (Continente) , Tamanho da Partícula
2.
Environ Int ; 172: 107744, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36696793

RESUMO

The 2017-2019 hourly particle number size distributions (PNSD) from 26 sites in Europe and 1 in the US were evaluated focusing on 16 urban background (UB) and 6 traffic (TR) sites in the framework of Research Infrastructures services reinforcing air quality monitoring capacities in European URBAN & industrial areaS (RI-URBANS) project. The main objective was to describe the phenomenology of urban ultrafine particles (UFP) in Europe with a significant air quality focus. The varying lower size detection limits made it difficult to compare PN concentrations (PNC), particularly PN10-25, from different cities. PNCs follow a TR > UB > Suburban (SUB) order. PNC and Black Carbon (BC) progressively increase from Northern Europe to Southern Europe and from Western to Eastern Europe. At the UB sites, typical traffic rush hour PNC peaks are evident, many also showing midday-morning PNC peaks anti-correlated with BC. These peaks result from increased PN10-25, suggesting significant PNC contributions from nucleation, fumigation and shipping. Site types to be identified by daily and seasonal PNC and BC patterns are: (i) PNC mainly driven by traffic emissions, with marked correlations with BC on different time scales; (ii) marked midday/morning PNC peaks and a seasonal anti-correlation with PNC/BC; (iii) both traffic peaks and midday peaks without marked seasonal patterns. Groups (ii) and (iii) included cities with high insolation. PNC, especially PN25-800, was positively correlated with BC, NO2, CO and PM for several sites. The variable correlation of PNSD with different urban pollutants demonstrates that these do not reflect the variability of UFP in urban environments. Specific monitoring of PNSD is needed if nanoparticles and their associated health impacts are to be assessed. Implementation of the CEN-ACTRIS recommendations for PNSD measurements would provide comparable measurements, and measurements of <10 nm PNC are needed for full evaluation of the health effects of this size fraction.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado/análise , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Tamanho da Partícula , Monitoramento Ambiental , Poluição do Ar/análise , Europa (Continente) , Cidades , Fuligem
3.
Sci Total Environ ; 688: 691-700, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31254835

RESUMO

Air pollution is a global challenge causing millions of premature deaths annually. This is limited not only to developing, but also developed nations, with cities in particular struggling to meet air quality limit values to adequately protect human health. Total exposure to air pollution is often disproportionately affected by the relatively short amount of time spent commuting or in the proximity of traffic. In this exploratory work, we conducted measurements of particle number concentrations using a DiscMini by bicycle. Eighteen tracks with accompanying video footage were analyzed and a suite of factors classified and quantified that influence exposure to air pollution. A method was developed to account for variations in the ambient average concentrations per trip that allowed for comparison across all tracks. Large differences in ultra-localized air pollution levels were identified and quantified for factors such as street type, environmental surroundings, and vehicle type. The occurrence of one or more non-passenger car vehicles, including e.g., buses, mopeds, or trucks, result in an increase in particulate concentrations of 30% to 40% relative to the average ambient level. High traffic situations, such as traffic jams or cars waiting at traffic lights, result in increased particulate concentrations (+47% and +35%, respectively). Cycling in residential neighborhoods decreased particulate number concentrations by 17% relative to the ambient average level, and by 22% when cycling through green spaces or parks. Such information is valuable for citizens who may want to reduce their air pollution exposure when moving through a city, but also for policy makers and urban planners who make or influence infrastructure decisions, to be able to reduce exposure and better protect human health, while progress is made to reduce air pollution levels overall.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Material Particulado/análise , Cidades , Humanos , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...